
Multi-task Feature Learning for EEG-based Emotion Recognition Using Group
Nonnegative Matrix Factorization

Ayoub Hajlaoui∗†, Mohamed Chetouani∗ and Slim Essid†
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Abstract—Electroencephalographic sensors have proven to be
promising for emotion recognition. Our study focuses on the
recognition of valence and arousal levels using such sensors.
Usually, ad hoc features are extracted for such recognition
tasks. In this paper, we rely on automatic feature learning
techniques instead. Our main contribution is the use of Group
Nonnegative Matrix Factorization in a multi-task fashion,
where we exploit both valence and arousal labels to control
valence-related and arousal-related feature learning. Applying
this method on HCI MAHNOB and EMOEEG, two databases
where emotions are elicited by means of audiovisual stimuli and
performing binary inter-session classification of valence labels,
we obtain significant improvement of valence classification
F1 scores in comparison to baseline frequency-band power
features computed on predefined frequency bands. The valence
classification F1 score is improved from 0.56 to 0.69 in the
case of HCI MAHNOB, and from 0.56 to 0.59 in the case of
EMOEEG.

Index Terms—Electroencephalography, Valence, Arousal, Non-
negative Matrix Factorization, Group NMF, Common Spectral
Patterns

1. Introduction

Electroencephalographic (EEG) recording has attracted
the attention of researchers in the field of affective comput-
ing as part of the effort to perform human-behaviour analy-
sis tasks, especially automatic emotion recognition. Indeed,
EEG signals have proven to be a precious clue in emotion
classification [1]. Emotions are often represented in a two-
dimensional valence-arousal space [2], which respectively
describe the pleasure or displeasure felt by a person and her
degree of “excitement”. Though the classification of valence
and arousal levels can be performed independently one from
another, it has been shown that multi-task learning, that
is learning to classify valence and arousal labels jointly,
can improve emotion classification performance [3], [4].
The interdependence between valence and arousal [5] can
explain such an improvement.

In this work, we take this interdependence into account
as we devise a novel feature learning strategy, instantiating

the multi-task learning paradigm, that proves to be effec-
tive for automatic valence/arousal classification from EEG
recordings. Our approach is clearly different from the ones
adopted in previous instantiations of the multi-task learning
paradigm in the context of physiological signal processing,
where the focus was rather on coping with subject variabil-
ity, using the data of other subjects to learn the model of a
target subject [6].

Our method relies on nonnegative matrix factorization
(NMF) that is applied to a time-frequency representation
of the EEG data, motivated by several studies showing the
importance of the brain activity in predefined frequency
bands, such as the β or γ bands, in emotional and cogni-
tive processes [7], [8]. NMF presents the advantage of not
relying on such ad hoc features.

The novelty of this paper mainly lies in the exploitation
of arousal labels to control valence-related feature learning
using Group Nonnegative Matrix Factorization (GNMF),
motivated by previous works on valence/arousal interdepen-
dencies [9].

Our NMF-based models were thus applied on the HCI
MAHNOB and EMOEEG [10], [11]. They present syn-
chronized physiological recordings, among which are EEG
recordings of subjects while short video stimuli were pre-
sented to them. We chose to perform single-channel based
emotion classification since it opens the way to easier
applicability in real-world scenarios with more lightweight
devices than full headsets.

The remainder of the paper is organised as follows. Sec-
tion 2 offers a brief review of the state-of-the-art in EEG data
recording and feature extraction for emotion classification.
Section 3 presents our NMF-related architecture for multi-
task feature learning. Section 4 details the experimental
setup and system hyper-parameter tuning, whereas Section 5
presents the classification results we obtained and discusses
them.

2. State of the art

Data recording. To address the challenge of assess-
ing the generalization abilities of EEG-based classification
systems across subjects, some existing databases such as
HCI MAHNOB and DEAP [10], [12] included a relatively
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high number of participants (respectively 27 and 32 each).
Others such as eNTERFACE’06 and EMOEEG [11], [13]
(with respectively 5 and 8 participants) chose to sacrifice
the number of subjects for the benefit of another consid-
eration. Because of the subject-dependent nature of EEG
responses [14], the number of trials or recording sessions
per participant is an important factor. For instance, in the
eNTERFACE’06 database, there are 30 trials per subject.
As for the HCI MAHNOB and the EMOEEG datasets,
on which we have performed our study, they respectively
contain 50 and 20 trials per session. A usual order of
magnitude for the duration of one trial is 15-20 seconds.

Elicited emotion classification tasks are known to be
complex. Most works focus on the classification of emotions
elicited by blocks of images [13]. A more complex task is
the classification of emotional states elicited by audiovisual
stimuli, as done in [10], where the recognition of auto-
assessed emotional states elicited by means of short video
excerpts was performed.

Finally, valence and arousal are usually discretized. Most
discretizations decompose each axis into two or three labels,
respectively low/high and low/average/high.

Feature extraction and feature learning. Commonly
extracted features are the spectral power for each considered
electrode in specific frequency bands (theta, slow alpha,
alpha, beta, gamma) that are well known for their role
in emotional and cognitive processes [8], [15]. Spectral
moments of different orders and heuristic spectral shape
descriptors have also been used [10], [16]. In the multi-
channel case, the spectral power asymmetry between spe-
cific pairs of electrodes can be computed in the frequency
bands mentioned earlier [17]. Other approaches such as
Common Spatial Patterns (CSP) [18]–[20] rather focus on
the spatial aspect of the activity on the skull.

What all these representations have in common is the
fact they rely on expert knowledge and a feature engi-
neering effort. The new trend in machine learning is to
learn representations adapted to the subsequent classification
stage. Along this line, Nonnegative Matrix Factorization
[21], which is an an unsupervised feature extraction method,
has been used for EEG-based motor imagery classification
tasks [22].

Multi-task feature learning has been used in a subject-
to-subject transfer fashion, where priors for feature dictio-
naries are shared across different subjects. Kang et al. [6]
used multi-task feature learning in such a way, improving
classification accuracy obtained from CSP filters on a motor
imagery task. They obtained an average accuracy of 0.54
across all subjects, whereas the average accuracy reached
almost 0.57 in the multi-task feature learning case.

3. NMF-based architecture for multi-task fea-
ture learning

3.1. Non-negative Matrix Factorization (NMF)

Let us recall the NMF model [21] that we use for feature
learning. The idea is to approximate a given non-negative

Figure 1. Learning a dictionary matrix W with GNMF

matrix V ∈ RF×N
+ by a product of non-negative matrices

Ṽ = WH with W ∈ RF×K
+ and H ∈ RK×N

+ . Assuming V
represents observations (the activity of F frequency bands
across T time frames), W is a dictionary of K atoms (or
latent variables) whose activation in time is indicated by
the rows of the activation matrix H. In the EEG-based
classification problem, V can be the Power spectrogram
related to the activity at one particular electrode or a linear
combination of electrodes.

The optimal W and H minimize a divergence between V
and WH, which is the sum of scalar divergences between the
coefficients of V and the coefficients of WH. The Itakura-
Saito (IS) divergence [23] has the desirable property of
scale invariance, meaning that in the minimization of the
divergence between V and WH, no particular advantage will
be given to high-value coefficients of V at the expense of
the low-value ones. The optimization problem can be solved
using so-called multiplicative update algorithms [24].

3.2. Multi-task GNMF-based feature learning

We exploit the Group-NMF (GNMF) model, which al-
lows one to account for similarity between sub-groups of
atoms [25]. A sub-group of V is a subset of columns of
V that were selected according to specific conditions. For
instance, if V stores the EEG signal recorded from a subject
while he/she watches a series of video stimuli, the chunk of
signal corresponding to a specific stimulus is a sub-group
of V.

Given a definition of sub-groups of V, GNMF adds to
NMF some constraints that force the atoms extracted from
the same sub-group of V to be similar, by adding to the
objective function to be minimized a term controlling the
distances between the atoms of the same sub-group. Within
this framework, Serizel et al. proposed a model which can
tackle two types of dependencies [26], that is two kinds of
groups at the same time, with a focus on modeling session
dependency. Their model inspired our derivations of GNMF.
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We call session the recording of a given subject at a
given time of the day. A subject can take more than one
session. In our multi-task approach, the considered sub-
groups are signal chunks corresponding to different pairs of
valence and arousal labels. GNMF uses valence and arousal
information to compute the atoms of the session dictionary
W across sessions. This dictionary is the concatenation
of sub-dictionaries related to each pair of valence/arousal
labels.

Let Val = {0, 1} and Arsl = {0, 1} be respectively the
sets of valence and arousal labels. Let Vv,a be the sub-matrix
of Vtrain corresponding to valence label v and arousal label
a (that is to say, the chunk of the data corresponding to
the valence annotation v and the arousal annotation a). Let
Wv,a be the sub-dictionary corresponding to valence label
v and arousal label a. In such sub-dictionary:

• W val
v,a is composed of Kval atoms that must be similar

to the other W val
v,a2

(v2 6= v)
• W aro

v,a is composed of Ksess atoms that must be
similar to other W sess

v2,s (v2 6= v)
• W res

v,a is composed of Kres atoms upon which no
additional constraints are added

In Figure 1, valence-dependent atoms are constrained to
show some similarity between W0,0 and W0,1 on the one
hand, and between W1,0 and W1,1 on the other hand (same
valence, different arousals). Likewise, another constraint lies
between arousal-dependent atoms.

Let D(.|.) denote the matrix divergence to minimize
between V and its approximation V’, and D2(.|.) another
divergence. Then the objective function to minimize in the
case of this specific GNMF model is:

FGNMF =

1∑
v=0

1∑
a=0

D1(Vv,a|Wv,aHv,a)

+ λval

1∑
v=0

D2(W
val
v,0|W val

v,1) + λaro

1∑
a=0

D2(W
aro
0,a|W aro

1,a)

The term λvalence controls the similarity between sub-
dictionaries corresponding to the same valence labels,
whereas λarousal controls the similarity between sub-
dictionaries corresponding to the same arousal labels. We
chose λvalence > λarousal for the valence classification task,
and vice versa. Following the framework described in [26],
similarities between valence and arousal-related atoms are
expressed in terms of Euclidean distance. The other atoms,
or residual atoms, allow a degree of freedom in the GNMF
minimization, so that the additional sub-group distances
constraint does not hamper the divergence minimization
between V and WH.

4. Experiments

4.1. Database and hyper-parameters

Table 1 summarizes the HCI MAHNOB and EMOEEG
databases characteristics, on which our study was per-

TABLE 1. HCI MAHNOB AND EMOEEG CHARACTERISTICS

Database HCI EMOEEG
Nb of sessions (used for classification) 24 8

Nb of video stimuli per session 20 50
Duration of a video stimulus 2̃5s 15s

Nb of electrodes 32 20

TABLE 2. SPECTROGRAM AND UNSUPERVISED NMF PARAMETERS

Downsampling factor 2 (256 Hz)
Considered frequencies 4 to 45 Hz

Tested electrode combinations [Cz Pz Cz-Pz Fz-Pz]
Divergence Itakura Saito

Number of initializations 5

formed. After watching a video stimulus, the subject as-
sesses his/her global valence and arousal levels during the
stimulation (static annotation). The values assessed are be-
tween 1 (very negative) and 9 (very positive). We binarize
such values considering two classes for each modality:
low and average/high. To minimize class-imbalance in the
training data, the low-value class corresponds to values from
1 to 4 in the case of HCI MAHNOB, but only from 1
to 3 in the case of EMOEEG. The main reason for such
a difference is that EMOEEG annotations are more biased
towards negative values, due to a focus on negative emotions
in the choice of the stimuli [11].

Table 2 reports the parameters used for the computation
of the power spectrograms and the NMF. The chosen elec-
trode was the central electrode Cz. The number of NMF
random initializations reported in Table 3 improves the
performance of this non-convex optimization. The number
of atoms K was empirically set to 100 in the unsupervised
NMF case.

An equivalent number of atoms Ktotal was used for
GNMF, as shown in Table 3. λvalence and λarousal are the
weights respectively given to the conditions of similarity of
atoms which share the same valence label and atoms which
share the same arousal label. Serizel et al.’s code was used
for GNMF [26].

4.2. Feature learning

The matrix V is a concatenation of power spectrogram
matrices over the time dimension, corresponding to a con-
catenation on trials and sessions. One part, Vtrain, of V is
used as the training feature matrix, whereas the remaining
part Vtest is used as the test feature matrix. We consider

TABLE 3. GNMF PARAMETERS IN THE CASE OF VALENCE
CLASSIFICATION (CONTROLLED BY BOTH VALENCE AND AROUSAL

LABELS)

Divergence Itakura-Saito
Kvalence,Karousal,Kresidual 15, 5, 5

Ktotal (15+5+5)×4=100
λvalence, λarousal (HCI) 10−4, 10−5

λvalence, λarousal (EMOEEG) 0.5, 0.05
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TABLE 4. F1-SCORES FOR EMOTION CLASSIFICATION OBTAINED FOR DIFFERENT METHODS ON HCI MAHNOB

Dimension Valence Arousal
Band power baseline 0.56 0.55

NMF 0.68 0.56
GNMF 0.69 0.59

TABLE 5. F1-SCORES FOR EMOTION CLASSIFICATION OBTAINED FOR DIFFERENT METHODS ON EMOEEG

Dimension Valence Arousal
Band power baseline 0.56 0.51

NMF 0.57 0.53
GNMF 0.59 0.51

an inter-session scheme, where V is the concatenation of
power-spectrogram matrices over the trials of all sessions.
Vtrain is composed of the recordings of all sessions but one,
whereas Vtest is composed of the recording of the remaining
session (with a view to performing leave-one-session-out
classification).

We followed the usual procedure for NMF-based clas-
sification: we jointly learned the dictionary W (as shown in
Figure 1) and computed the training feature matrix Htrain

from the training matrix Vtrain, after which we computed
Htest by performing unsupervised NMF with W fixed on
Htest.

4.3. Classifier training and evaluation

While the feature learning stage was multi-tasked with
GNMF, single-task classifiers were used, that is classi-
fiers for valence and arousal were learned separately. For
each session, NMF and GNMF were performed on the
spectrogram matrix Vtrain corresponding to all sessions but
one. This process was repeated for each session, so as to
perform leave-one-session-out cross-validation. The training
outputs were used to train a linear SVM classifier, for
which the best values of the regularization parameter C were
found by performing a grid search on the following grid :
{2−5, 2−4.5, ..., 24.5, 25}.

5. Results

Tables 4 and 5 present the obtained F1 scores for the
valence and arousal classification tasks on HCI MAHNOB
and EMOEEG. In addition to a frequency-band power fea-
ture baseline used in [10], that is to say θ, slow α, α, β,
γ Power Spectral Density (PSD) and PSD asymmetry, and
to an unsupervised NMF-based classification, valence clas-
sification was performed using GNMF explicitly accounting
for both valence and arousal variability. In other words, the
variability related to the arousal label is used to improve the
performance of the valence classification task. Therefore,
the task of classifying valence labels is controlled by both
valence and arousal labels. For arousal classification, GNMF
also accounted for valence and arousal variability.

In the case of HCI MAHNOB, NMF performs better
than the baseline in terms of valence classification, with

an F1 score of 0.68 against 0.56. GNMF yields a score of
0.69, making a slight improvement compared to NMF. As
for arousal classification, Table 4 shows that GNMF (0.59)
yields a more significant improvement of the baseline (0.55)
than NMF (0.56).

In the case of EMOEEG, GNMF slightly improves the
valence classification score, as shown in Table 5. However,
the weak arousal F1 score obtained with the baseline is not
improved.

An interesting comparison point between the two
databases is the fact that the baseline performed better
valence classification for EMOEEG than for HCI, whereas
GNMF performed much better for HCI. The reason why
EMOEEG did not benefit from GNMF as HCI could be
that the arousal annotations are less reliable in EMOEEG,
as suggested by the weaker baseline arousal classification.
Such annotations are used not only for GNMF-based arousal
classification, but also for GNMF-based valence classifica-
tion, which would explain why the valence classification
score stagnates for EMOEEG.

Even if some encouraging results were obtained using
arousal labels to control valence-related feature learning,
the way to further improvement is clear, especially for the
EMOEEG dataset.

6. Conclusion and future work

Two pre-existing multimodal databases, namely the HCI
MAHNOB and EMOEEG datasets, have been exploited to
test a novel EEG-based emotion recognition system. We
have used GNMF for feature learning, using valence labels
to control the learning of an arousal classifier, and vice-
versa. This is realized in a multi-task fashion. F1-scores
obtained prove that the use of arousal labels to control
the valence classification task improves its performance.
However, the arousal classification task is more challenging.

Future work will seek the extension of such classification
tasks to multi-label cases, with a particular attention to
ensure that the constraint of similarity is bigger for GNMF
sub-dictionaries corresponding to closer labels than for sub-
dictionaries corresponding to distant ones. More specifically,
the valence classification task is more challenging when the
arousal is low, which has to be tackled with a particular fo-
cus on sub-dictionaries corresponding to low arousal labels.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 94



Acknowledgments

This research has been supported by the Laboratory
of Excellence SMART (ANR-11-LABX-65) supported by
French State funds managed by the ANR within the In-
vestissements d’Avenir programme (ANR-11-IDEX-0004-
02).

References

[1] V. Bajaj and R. Pachori, “Human emotion classification from eeg
signals using multiwavelet transform,” in Medical Biometrics, 2014
International Conference on. IEEE, 2014, pp. 125–130.

[2] A. Mehrabian and J. Russell, An approach to environmental psychol-
ogy. the MIT Press, 1974.

[3] M. Kandemir, A. Vetek, M. Gönen, A. Klami, and S. Kaski, “Multi-
task and multi-view learning of user state,” Neurocomputing, vol. 139,
pp. 97–106, 2014.

[4] M. Abadi, A. Abad, R. Subramanian, N. Rostamzadeh, E. Ricci,
J. Varadarajan, and N. Sebe, “A multi-task learning framework for
time-continuous emotion estimation from crowd annotations,” in Pro-
ceedings of the 2014 International ACM Workshop on Crowdsourcing
for Multimedia. ACM, 2014, pp. 17–23.

[5] P. Kuppens, F. Tuerlinckx, M. Yik, P. Koval, J. Coosemans, K. J.
Zeng, and J. A. Russell, “The relation between valence and arousal
in subjective experience varies with personality and culture,” Journal
of personality, 2016.

[6] H. Kang and S. Choi, “Bayesian multi-task learning for common
spatial patterns,” in Pattern Recognition in NeuroImaging (PRNI),
2011 International Workshop on. IEEE, 2011, pp. 61–64.

[7] N. Rowland, M. Meile, S. Nicolaidis et al., “Eeg alpha activity reflects
attentional demands, and beta activity reflects emotional and cognitive
processes,” 1985.

[8] M. Li and B.-L. Lu, “Emotion classification based on gamma-band
eeg,” in 2009 Annual International Conference of the IEEE Engineer-
ing in Medicine and Biology Society. IEEE, 2009, pp. 1223–1226.

[9] F. Schweitzer and D. Garcia, “An agent-based model of collective
emotions in online communities,” The European Physical Journal B,
vol. 77, no. 4, pp. 533–545, 2010.

[10] M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, “A multimodal
database for affect recognition and implicit tagging,” IEEE Transac-
tions on Affective Computing, vol. 3, no. 1, pp. 42–55, 2012.

[11] A.-C. Conneau, A. Hajlaoui, M. Chetouani, and S. Essid, “Emoeeg:
A new multimodal dataset for dynamic eeg-based emotion recogni-
tion with audiovisual elicitation,” in Signal Processing Conference
(EUSIPCO), 2017 25th European. IEEE, 2017, pp. 738–742.

[12] S. Koelstra, C. Muhl, M. Soleymani, J.-S. Lee, A. Yazdani,
T. Ebrahimi, T. Pun, A. Nijholt, and I. Patras, “Deap: A database for
emotion analysis; using physiological signals,” IEEE Transactions on
Affective Computing, vol. 3, no. 1, pp. 18–31, 2012.

[13] A. Savran, K. Ciftci, G. Chanel, J. Mota, L. Hong Viet, B. Sankur,
L. Akarun, A. Caplier, and M. Rombaut, “Emotion detection in the
loop from brain signals and facial images,” 2006.

[14] M. Thulasidas, C. Guan, and J. Wu, “Robust classification of eeg
signal for brain-computer interface,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 14, no. 1, p. 24, 2006.

[15] R. Yuvaraj, M. Murugappan, N. Ibrahim, M. Omar, K. Sundaraj,
K. Mohamad, R. Palaniappan, and M. Satiyan, “Emotion classi-
fication in parkinson’s disease by higher-order spectra and power
spectrum features using eeg signals: A comparative study,” Journal
of integrative neuroscience, vol. 13, no. 01, pp. 89–120, 2014.

[16] A.-C. Conneau and S. Essid, “Assessment of new spectral features for
eeg-based emotion recognition,” in 2014 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2014, pp. 4698–4702.

[17] Y.-J. Liu, M. Yu, G. Zhao, J. Song, Y. Ge, and Y. Shi, “Real-time
movie-induced discrete emotion recognition from eeg signals,” IEEE
Transactions on Affective Computing, 2017.

[18] S. Koelstra, A. Yazdani, M. Soleymani, C. Mühl, J.-S. Lee, A. Nijholt,
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