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Abstract—This paper presents a novel Doppler processing
scheme for pulse Doppler radars operating in at intermediate
Pulse Repetition Frequency (PRF) and suffering from range
and Doppler ambiguities. One of the main drawbacks of the
classical Doppler processing approach concerns the suppression
of small and slowly-moving targets when rejecting ground clutter
returns. In order to address this problem a two-step Doppler
method is proposed in this paper. The first step uses a new
iterative algorithm that resolves ambiguities and detects fast
(exo-clutter) targets. The detection of slow (endo-clutter) targets
is then performed by an adaptive detection scheme that uses
a new covariance matrix estimation technique. Pulse trains
with different characteristics are then associated for enhanced
detection performance.

I. INTRODUCTION

Moving target separation from ground clutter is generally
performed by Doppler processing. A bank of Doppler filters is
used to reject clutter returns around zero-Doppler frequency.
The consequence of clutter rejection is the suppression of
small and slowly-moving targets whose responses are buried
into clutter returns. Pulse Doppler radars operating at an
intermediate Pulse Repetition Frequency (PRF) suffer from
range and Doppler ambiguities. A conventional solution to
resolve ambiguities consists in transmitting successive pulse
trains with different repetition frequencies. Each PRF value
results in distinct unambiguous range and velocity, and am-
biguity resolution is generally achieved by searching for
coincident returns between burst responses. The transmission
of successive pulse trains results in shorter train duration and
hence a poorer Doppler resolution. Conventional estimation
methods showing good resolution capabilities, like Capon’s
method [1] and MUSIC [2] can not be applied to resolve
ambiguities from burst signals with PRF diversity, they need
to estimate the covariance matrix from several observations
and only a single observation is available per burst. The well-
appreciated Maximum Likelihood (ML) approach [3] is based
on a criterion that can jointly handle differently sampled bursts
signals and resolve ambiguities, however, its implementation
can be extremely complex.
In this paper, a new Doppler processing approach for a better
detection of small and slowly-moving target is proposed. It

includes a fast iterative ML estimator that allows to resolve
the Doppler ambiguities and provides high resolution estimates
of exo-clutter target velocities. An adaptive detector is than
used to detect slowly-moving targets. The realistic hypothesis
of compound-Gaussian environments is considered and the
Adaptive Normalized Matched Filter(ANMF) which has been
proved to be the most appropriate in this cases is applied.
In practice, the ANMF uses an estimate of the covariance
matrix obtained from a set of training data. In compound-
Gaussian clutter environment, the Fixed Point FP estimator
[4] is generally used to estimate the signal covariance ma-
trix and its performance depend on the number of available
independent and identically distributed (i.i.d.) training data
sharing the same distribution as the cell under test. Numerous
research efforts has been devoted to provide an accurate
covariance matrix estimate from a reduced number of training
data [5], [6]. However, doing so increases the sensibility to
the presence of targets in the training support, which may
significantly degrades estimation performance. In this paper
a method that allows to estimate covariance matrix from the
differently sampled burst-observations is proposed. It increases
the number of training data and therefore enhance the detection
performance.

II. SIGNAL MODEL

This paper considers a ground-based pulse Doppler radar
operating at an intermediate PRF with a maximum unam-
biguous velocity vamb ' 200m/s with c the speed of the
light and fc the carrier frequency. In practice, target radial
velocities may vary from 5m/s (domestic aerial unnamed
vehicle) to 2000m/s (fighter aircraft). The Doppler ambiguity
factor | vi

vamb
| is therefore much greater than one, it reach values

up to 10. For the sake of simplicity, only the Doppler axes is
considered, targets are supposed to be unambiguous in range.
To resolve Doppler ambiguities, successive coherent bursts
with PRF diversity are transmitted. Each burst consists of
uniformly spaced pulses whereas the number of pulses Mk

and the pulse repetition frequency PRFk are different from
one burst to the other. The carrier frequency is also generally
varied from bursts to burst in order to enhance detection
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performance by forcing target echo decorelation between the
different bursts. Considering Nt targets within the radar scene,
the received signal is generally formed by the sum of their
responses in addition to undesired acquisition noise n and
clutter returns c. After range-compression and by assuming
no range migration all through duration of successive bursts,
the received signal from the Mk pulses of the kth burst in a
single range-cell can be expressed in the following form

yk =

Nt∑
i=1

xk,iak (vi) + zk + nk ∈ CMk (1)

Where,
xk,i is the ith target response complex amplitude. Burst-
wise frequency diversity forces target echo decorrelation.
Under the hypotheses that the burst duration is small,
xk,i is supposed to be constant during each burst and
varies from one burst to another as a stationary zero-mean
Gaussian process.
ak denotes the target Doppler signature, or the Doppler
vector corresponding to the velocity vi, ak (vi) =

[1, . . . , e
j2π(M−1) vi

vambk ].
zk is modeled as a Spherically Invariant Random Vector
(SIRV) [7], ck =

√
τkgk is then the product of a positive

random variable τk (texture) and a complex Gaussian
zero-mean vector gk (speckle).
nk is a Gaussian white noise.

III. NEW DOPPLER PROCESSING APPROACH

To enhance the detection of small and slowly-moving targets
a two-step Doppler processing technique for intermediate PRF
pulse Doppler radars is proposed in this paper. A new iterative
algorithm is first applied to burst signals in order to resolve
Doppler ambiguities and discriminate high speed exo-clutter
targets from the Gaussian white noise. An adaptive detector
based on a multiple-burst covariance matrix estimate is then
used to detect slowly-moving targets in the main lobe clutter
region.

A. Fast iterative multiple-burst ML estimation

In the proposed processing approach the Relaxed Iterative
Multiple-Burst Algorithm (ReIMBA) [8] is used to detect and
estimate radial velocities of exo-clutter targets. The ReIMBA
is a fast iterative solution to the Deterministic Maximum
Likelihood (DML) criterion

K∑
k=1

‖yk −Ak (v)xk‖2 (2)

Minimizing the DML criterion with respect to v results in the
following multi-dimensional non-linear problem

v̂ = argmin
v

K∑
k=1

‖P⊥Ak(v)
yk‖2 (3)

Where P⊥Ak(v)
= IMk − Ak (v) (AH

k (v)Ak(v))−1AH
k (v)

denotes the orthogonal projector onto the null space of Ak (v),

IM is the identity matrix of size M . The ReIMBA resolves
progressively this problem by sequentially identifying the
velocity coordinate that correspond to the nearest grid point
from its one-dimensional solution, re-estimating together the
velocities of all detected targets, then updating the residual
signal of each burst. At each iteration the algorithm selects
the velocity coordinate that maximize incoherently integrated
signals

lΣ =
K∑
k=1

lk =
K∑
k=1

|AH
k (vs) rk|2 (4)

Where vs represents a grid of potential velocities in the search
domain and rk is the residual of the kth burst. Initially rk =
yk, it is updated at each iteration as follows

rk = P⊥Ak(v̂)
yk (5)

Where v̂ is the vector of velocity estimates.
Figure 1 illustrates the gain obtained by incoherently inte-
grating five burst signals with PRF and frequency diversity.
As showed in table I presenting signal characteristics, burst
signals have the same Doppler resolution δv and different
unambiguous velocities. They contain a target with a mean
power of 40dB and a velocity of 0m/s in addition to a
Gaussian withe noise of 0dB.

Figure 1a illustrates matched filtered signals. It can be

Parameters burst 1 burst 2 burst 3 burst 4 burst 5
fc (GHz) 3 3.01 3.025 3.015 3.02
PRF (Hz) 3400 3812.7 4235 4623 5033.3
M 17 19 21 23 25
δv (m/s) 10 10 10 10 10
vamb (m/s) 170 190 210 230 250

TABLE I
OBSERVED SIGNAL CHARACTERISTICS

seen that target responses coincide at the true target velocity
(marked with a cross), whereas ambiguous response locations
are varying from burst to burst. Incoherent integration of burst
signals, in figure 1b, provides a gain of K at true target
velocity with respect to ambiguous response power allowing
to distinguish the true target response.
The discretization of the search domain in the first step of
ReIMBA leads to estimation errors when target velocities do
not exactly coincide with the grid. Moreover, as ReIMBA
is based on a matched filtering approach, target velocities
should be separated by more than the Doppler resolution to be
correctly estimated. Estimation errors at one stage affect the
next estimates and can lead to the generation of false alarms.
In order to improve the estimation accuracy, the ReIMBA re-
estimates at each iteration the entire set of selected target
velocities before updating the residuals. The computational
complexity of this multi-dimensional problem is reduced by
relaxing it into multiple one-dimensional problems as pro-
posed in [9].
As long as the maximum of lΣ exceeds the detection threshold
λ, a new contribution (target or clutter response) is detected
and the algorithm iterates. The threshold is fixed according to
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(a) Matched filters (b) Integrated signal

Fig. 1. Incoherent integration Gain. Ambiguous target with a mean power of 40dB and a radiale velocity of 270m/s.

the desired false alarm rate with respect to the measurement
noise. The ReIMBA does not allow to distinguish targets
from clutter contributions. Figure 2 illustrates an example
of ReIMBA output in case of a complex scenario with two
targets, a Gaussian white noise and a compound-Gaussian
clutter. The Clutter to Noise Ratio (CNR) is 40dB. The
five burst signals with PRF and frequency diversity of the
preceding simulation are considered. The first target is an
endo-clutter target with radial velocity v1 = 2.5m/s = δv

4
and a mean power of 40dB and the second one is a fast exo-
clutter target with radial velocity v2 = 500m/s = 2vamb5 and
a mean power of 40dB.
Simulation results show that the ReIMBA detects the exo-

clutter target and estimates its true velocity despite the fact
that its response coincides with a clutter side-lobe (v2 =
500m/s = 2vamb5 ). Two other contributions are detected
at −0.09m/s and 1.5m/s. These contributions result from
the combination of the clutter and the slowly-moving target
contribution. Hence, an adaptive detection has to be performed
to distinguish slowly-moving target contributions from the
clutter response.

B. Multiple-burst adaptive detection

The second step of the proposed approach uses the Adaptive
Normalized Matched Filter (ANMF) [10] to detect slowly-
moving targets in the main-lobe clutter region

ΛANMFk
=

|aHk (v)R−1k yk|2

(aHk (v)R−1k ak(v))(yHk R−1k yk)
≷ λANMFk

(6)
In practice, the FP estimator usually estimates the unknown
covariance matrix Rk from i.i.d. range cells adjacent to the
cell under test

R̂FPk
=
Mk

Nd

Nd∑
i=1

yk,iy
H
k,i

yHk,iR̂FPk
yk,i

(7)

Where Nd denotes the number of training data. Despite the
good statistical properties of this estimator in compound-
Gaussian clutter environment, its performance can be strongly
degraded when the number of training data is small (< 2Mk

[11]). The number of adjacent range cells satisfying the i.i.d.

condition with respect to the range under test is generally
insufficient to ensure good estimation performance. Associ-
ating training data from different burst is then a solution to
increase the i.i.d. training support. However, as transmitted
bursts have different PRFs and carrier frequencies, a direct
association of burst data to estimate a common covariance
matrix is impossible.
A method to jointly estimate the covariance matrix from the
different bursts data is proposed in this section. It relies on
the fact that clutter has generally a continuous power spectral
density. In case of a small variation of carrier frequency,
the power spectral density of the signals of the different
bursts are highly correlated. Thus a spectral interpolation-like
transformation is feasible.
The proposed transformation approach matches the training
data of burst k′ with a number of pulses M ′k, PRF PRF ′k
and carrier frequency fck′ matching with the characteristics (
Mk, PRFk and fck ) of the burst k in the spectral domain. To
do so, a transformation matrix Ãk′→k ∈ CMk′×Mk is used to
perform a Discrete Fourier Transform (DFT) of the training
data yk′,i at the coordinate of burst k

yk′,i(fdk) = ÃH
k′→kyk′,i (8)

With

Ãk′→k =
1√
Mk′


1 · · · 1

1 · · · e
j2π

(Mk−1)fc
k′

fck
PRF

k′
δfdk

...
...

1 · · · e
j2πMk′

(Mk−1)fc
k′

fck
PRF

k′
δfdk

 (9)

An inverse transformation with a classical DFT matrix Ak ∈
CMk′×Mk is then used to come back to time domain. The
resulting signal yk′→k,i ∈ CMk is obtained as follows

yk′→k,i = βk′→kyk′,i (10)

With,

βk′→k = AkÃ
H
k′→k (11)
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(a) Integrated signal (b) ReIMBA output

Fig. 2. ReIMBA output in presence of endo and exo-clutter targets. Endo-clutter target velocity 2.5m/s = δv
4

, exo-clutter target velocity 500m/s = 2vamb5 ,
target mean powers 40dB.

The proposed approach allows to estimate the covariance
matrix of each burst k from the training data of bursts
k′ = 1, . . . ,K as follows

R̂CFPk
=

Mk

NdK

Nd∑
i=1

K∑
k′=1

βk′→kyk′,iy
H
k′,iβ

H
k′→k

βk′→kyk′,iR̂
−1
FPk

yHk′,iβ
H
k′→k

(12)

Where R̂CFPk
is called the Composite Fixed Point matrix

(CFP).
Estimated matrices are then injected in the ANMF detector to
form a multiple-burst adaptive detection scheme

ΛANMF =

K∑
k=1

|aHk (v)R−1k yk|2

(aHk (v)R−1k ak(v))(yHk R−1k yk)
≷ λANMF

(13)

IV. PERFORMANCE ASSESSMENT

In this section, performance of the proposed Doppler pro-
cessing approach are evaluated using simulated and real radar
data. Performance of the ReIMBA are verified by analyzing
the estimation accuracy of target velocity estimates. The
proposed transformation approach for the covariance matrix
estimation is then investigated. Detection performance of the
ANMF detectors associated to multiple-burst CFP estimator
are compared against the classical single-burst FP estimator
through Monte-Carlo simulations.

A. Performance on simulated Data

Simulated data consist of five burst with PRF and frequency
diversity similar to the ones presented in section III.

In the first experiment, the observed signals contains a
Gaussian white noise of 0dB and two ambiguous and closely
spaced targets whose velocities are separated by δv

2 . The Root
Mean-Squares Error (RMSE) of one of the two target velocity
estimates are compared to the Cramer Rao Bound (CRB)
[12] and are illustrated in figure 3. The figure shows that
ReIMBA estimates approach the CRB bound. This means that
the algorithm resolved Doppler ambiguities and accurately
estimated target velocities. The second simulation evaluates

Fig. 3. Estimation accuracy in presence of two closely-spaced targets
|v1 − v2| δv2 .

the performance of the proposed multiple-burst covariance
matrix estimation approach. A scenario with Gaussian white
noise of 0dB and a compound-Gaussian clutter of 40dB
is considered. Clutter samples are generated according the
windblown ground clutter model of Billingsley [13] where the
wind velocity is set to w = 8.12m/s. The texture follows the
Weibull distribution with shape parameter ρ = 0.74 and scale
factor ψ = 0.65.
The detection performance of the ANMF-CFP are compared
against those of the ANMF-FP. The covariance matrix of the
fifth burst, M5 = 25, is estimated by CFP from the five burst
training data and by the FP from the fifth burst training data.
The number of range cell data considered by each estimator
is Nd = 25 and Nd = 10 for the CFP and Nd = 125 and
Nd = 50 for the FP. Figure 4 represents the Probability
of detection (Pd) versus SNR curves. Curves are obtained
from 1000 Monte Carlo simulations containing an endo-clutter
target with v = 5m/s. The figure shows that the ANMF-
CFP detector performs as well as the ANMF-FP detector with
K = 5 times more training cells. The proposed multiple-burst
estimation approach allows to obtain a larger training support
by combining the signals from different bursts.
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Fig. 4. Comparison of Pd−SNR curves of ANMF-FP and ANMF-CFP on
simulated data. Burst of Mk = 25 pulses, the CFP matrix is estimated from
5 bursts with M1 = 17 , M2 = 19 , M3 = 21 , M4 = 23 and M5 = 25
pulses, Pfa = 10−3.

B. Performance on real Data

Detection performance obtained on simulated data are ver-
ified on real data collected with a ground-based radar of
Thales Air Systems. The radar was illuminating a heavy sea
clutter clutter from a height of 60 m at a grazing angle of
0◦. Four successive bursts with different carrier frequencies,
different number of pulses (11, 12, 13, 14) and different PRFs
are considered.
Figure 5 illustrates the Pd-SNR curves of the ANMF-CFP and
ANMF-FP. To obtain these curves a target was generated at
the same radial velocity v = 5m/s in 1000 range cells. The
covariance matrix of the fourth burst (M4 = 14) is estimated
by the CFP and FP estimators. Detection performance of the
ANMF-CFP with Nd = 28 and Nd = 7( 28

4 ) are compared
to those of ANMF-FP with Nd = 28 = 2M4. The two
detector provides the same performance when the CFP matrix
is estimated from Nd = 7 rang cells versus Nd = 28 for
the single burst FP estimator. A significant gain ' 30dB is
obtained by the ANMF-CFP when the CFP when the CFP
matrix is estimated with the same number of rang cells as the
FP estimator (Nd = 28). This result shows that the proposed
multiple-burst approach for the covariance matrix estimation
enhance the detection of small and slowly moving targets.

V. CONCLUSION

In this paper a two-step Doppler processing method that en-
hances the detection of small and slowly moving target in the
context of highly Doppler ambiguous radar has been proposed.
It uses a fast iterative ML algorithm that resolves ambiguities,
detects principal signal components (targets+ clutter), and
provides high resolution estimate of their velocities. After that,
an adaptive multiple-burst detector is applied to detect slowly-
moving targets in the main-lobe clutter region. A new multiple-
burst covariance matrix estimation approach is introduced. It
allows to increase the number of i.i.d. training data showing
better detection performance. The proposed Doppler process-
ing was tested successfully on real and simulated data showing
its effectiveness.

Fig. 5. Comparison of Pd − SNR curves of ANMF-FP and ANMF-CFP
on real data. Burst of Mk = 25 pulses, the CFP matrix is estimated from
4 bursts with M1 = 11 , M2 = 12 , M3 = 13 and M5 = 14 pulses,
Pfa = 10−1.
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