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Abstract—Color plus depth format allows building 3D repre-
sentations of scenes within which the users can freely navigate
by changing their viewpoints. In this paper we present a
framework for view synthesis when the user requests an arbitrary
viewpoint that is closer to the 3D scene than the reference image.
The requested view constructed via depth-image-based-rendering
(DIBR) on the target image plane has missing information due
to the expansion of objects and disoccluded areas. Building on
our previous work on expansion hole filling, we propose a novel
method that adopts a graph-based representation of the target
view in order to inpaint the disocclusion holes under sparsity
priors. Experimental results indicate that the reconstructed views
have PSNR and SSIM quality values that are comparable to those
of the state of the art inpainting methods. Visual results show that
we are able to preserve details better without introducing blur
and reduce artifacts on boundaries between objects on different
layers.

Index Terms—Graph signal processing (GSP), depth-image-
based-rendering (DIBR), free viewpoint navigation, inpainting

I. INTRODUCTION

Multiview systems primarily try to offer the users a smooth
navigation experience in a 3D environment through an effec-
tive combination of camera images and virtual (i.e., synthe-
sized) views. Such navigation has been extensively studied for
user movement equidistant from the 3D scene. However, much
less work has been focused on the case where user navigates
to a closer point within the scene. In this case, properly
representing the details that become available in the virtual
views is the main challenge, since the revealed information is
not included a priori in the reference views.

In this paper, we focus on the specific problem of zooming
in a 3D scene from a reference camera image. We propose
a novel graph-based method to inpaint disoccluded areas in
the synthesized view, that are occluded by foreground objects
in the reference view. Given one reference image of a 3D
scene and the corresponding depth image, we first construct
a target virtual view that is closer to the scene using DIBR
algorithm [1] that estimates the virtual image content by
employing depth information and geometric projections. We
represent the projected pixels on the target view as a signal
on a graph, which provides us with the benefit of embedding
the scene geometry within the graph topology. When the
user comes closer to the scene, expansion holes are created
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on the requested view due to enlarging objects with respect
to the reference view. We had presented a framework for
interpolating the expansion holes on the target view in our
previous work [2], that approximates the missing values of
the graph signal using a sparse representation on a parametric
spectral graph dictionary. We now propose a graph-based
regularization framework with a sparsity constraint to inpaint
the disocclusion holes on the synthesized texture image. We
solve our problem using the Orthogonal Matching Pursuit
(OMP) algorithm [3] as it often provides an effective trade-off
between computational complexity and quality of the sparse
reconstruction.

Image inpainting algorithms can be divided into three
general classes: statistical, PDE-based and exemplar-based
methods. In statistical approaches, an input texture is described
by extracting textures through the use of compact parametric
statistical models [4]. These methods fail in the presence of
additional intensity gradients. PDE-based methods propagate
structures from the known part of the image [5]-[7] introduc-
ing smoothness priors, however they fail to reconstruct large
holes with high frequency textures. PDE-based methods are
therefore more well-suited for inpainting small holes and flat
structures. Among the three classes, exemplar-based methods
are most widely used. The holes in image are filled using
exemplars sought throughout local or global search regions,
where the most challenging tasks consist in determining the
filling order of pixels via a priority term, and choosing the
exemplar [8]-[12]. These works only use the texture images
and not the depth maps. Depth guided inpainting methods
[13]-[19] aim to prioritize the background in choosing the
filling order and seek exemplars that are consistent with
scene geometry. There are also hybrid methods [20]-[22] that
combine multiple classes of approaches for inpainting.

Unlike the mentioned works dealing with horizontal trans-
lation warping, it is no longer possible to use the reference
texture and depth images as exemplars in the case of zooming
in. This is due to expansion of objects in different layers and
the details that might be revealed as the user approaches the
scene. Since the requested viewpoint is closer to the scene,
objects will become larger in the target view compared to
the reference view. This difference in dimensions of objects
prevents inpainting the disocclusion holes using exemplars
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from the reference view directly. We also do not have a unique
direction at which the disocclusion holes will appear. None
of the mentioned works propose a solution for inpainting of
images closer to the scene. Our method preserves both the
texture and the geometry of the scene while jointly inpainting
intensity and depth images, even if it cannot benefit from
information such as exemplars or a unique direction of holes
that are available in translations equidistant to the scene.
The outline of the paper is as follows. We introduce our
view synthesis framework and the graph-based view represen-
tation formalism in Section II. In Section III we formulate our
graph-based inpainting problem and describe our new solution
based on a sparse representation on a parametric spectral graph
dictionary. We validate the performance of our approach in
Section IV. Finally, conclusions are presented in Section V.

II. ZOOMING IN 3D SCENES AND GRAPH-BASED
REPRESENTATION

We consider a framework where we reconstruct a virtual
image based on a reference camera image and a depth map
captured further away from a 3D scene. With such forward dis-
placement, all objects of the scene are expanding, with a faster
rate for foreground objects than for the background, and some
image details become more prominent. We build an estimate
of the virtual image through DIBR and fill in the expansion
holes using the graph-based interpolation method explained in
[2]. Graph-based representation permits to describe data that
lie on irregular structures, such as the one created by depth-
based projection of the pixels in the reference image. The
distribution of expansion holes, however, are different than
disocclusion holes in the sense that the former appear as cracks
and are smaller compared to the latter, as shown in Figure 1.
We therefore need to propose a different inpainting strategy
to fill larger holes.

Fig. 1. Target view (left). Map of projected (red) pixels rounded onto grid
positions (middle). The black cracks are expansion holes while dense black
areas are disocclusion holes. The disocclusion hole boundary 6V before
inpainting is shown in red (right).

In our approach, we denote a graph as G = (V, ) where
V are the vertices and E are the edges between vertices. The
set of vertices ) is the union of the set of vertices V), that
correspond to the pixel positions of the disocclusion holes
in the target view, and the set of vertices V; = V — V)
that correspond to the positions of pixels whose values are
known after depth based rendering. The signal lying on G
describes the luminance information and is denoted as y. The
objective of our inpainting algorithm is to estimate the values
of the signal y on the vertices in V. Vertices 7,7 € V) are
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connected with an edge if they are on the same depth layer,
meaning that their depth values do not differ more than a
small threshold, and the edge weight w(, j) is a measure of
similarity between the signal values on vertices 7 and j. In
general, no signal value is available on the vertices in V) after
depth-based projection and expansion hole interpolation on the
reference image, therefore the weight between nodes i € V)
and j € V; is a function of geometric distance only.

III. INPAINTING

In this section we explain our proposed method to inpaint
the disocclusion holes in detail. We first describe how we
determine the filling order of the disocclusion hole pixels,
starting from the disocclusion hole boundary denoted as 6.
We then describe our inpainting strategy on depth images, and
our graph-based inpainting method for texture images.

A. Priority

The performance of inpainting algorithms are vastly in-
fluenced by the filling order among the nodes lying on the
disocclusion hole boundary. We want to propagate the signal
values from V; to V, starting from the node p € 6V, such
that the k& x k region around p denoted by ¥, is (i) the most
confident region at the hole boundary §V, (ii) the region with
least depth variation and (iii) favors the propagation of signal
values from background onto the holes.

We quantify the effect of the factors stated above by assign-
ing functions and computing the combined impact denoted as
the priority function P(p) for each pixel p on 0Vy. To give
higher priority to regions that have greater percentage of nodes
with known values, we use the confidence term C(p) proposed
in [8] preferred by most state-of-the-art inpainting methods.
We adopt the level regularity term L(p) introduced in [13]
which is the inverse depth variance of the corresponding region
W,, on the depth image Z, denoted by Z,. We prioritize the
regions with larger overall depth values, using a depth mean
term Zpeqr — Zp as described in [14], where Z,,..r 1S the
maximum depth value in reference depth image and Z,, is the
mean depth value around pixel p, computed using available
values. We introduce the background term I(p), which further
influences the filling order to favor pixels p on the background
with respect to others. We then combine these terms and
formulate out priority function as:

P(p) = (C(p) + L(p)) X (Znear - Zp) X I(p) ()

C
with C(p) = W o
p
|Z,|
t N = 3
(p) |Zp| + ZQEZpﬁvl (Zp(q) _ p)z (3)
1
"= 70 (4)

In our formulation we want the influence of depth mean
term and background term to be higher than the confidence
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Fig. 2. (a) Art depth image with disocclusion holes and (b) disocclusion holes reduced by projection of the mesh built on reference depth image. Exemplary
projected triangles are depicted in red color. (c¢) Our resulting depth map after proximity background interpolation, (d) ground truth depth map.

and level regularity terms individually, to ensure the propa-
gation of background values into the holes rather than the
foreground values. We therefore add the confidence and level
regularity terms first, and introduce the sum as a multiplier
in (1). The depth mean and background terms dominate the
priority measure in this case. We choose the pixel p on the
disocclusion hole boundary 6V, with the highest priority value,
i.e., p = argmax, P(p), and move on to the inpainting of the
region centered around p.

B. Depth and Texture Inpainting

After finding the pixel p with the highest priority, we find
the node set V, within the k£ X k area centered around p such
that any node g € Vs if 2(q) < 2(p) + taepth, Where tgepn is a
depth threshold arbitrarily determined to make sure we inpaint
pixels only on the same depth layer.

Our depth map Z has much less disocclusion holes com-
pared to the texture image Y due to the mesh we add on
the layer boundaries of the reference depth image prior to
performing DIBR. The mesh consists of triangles connect-
ing different layers on the reference image, which are then
projected onto the target image plane by DIBR. Examples of
projected triangles with corners on different depth layers are
depicted using red color in Figure 2(a). Disocclusion holes
inside these triangles in the target depth image are filled using
the minimum depth value on the corners of each triangle. We
infer that this value corresponds to the background depth value
to be revealed in the target view. The result of this reduction
can be seen on Figure 2(b). If any holes remain on the depth
map within the region corresponding to nodes V, we fill
them by using the smallest known depth value on immediate
neighbors of p. Our final result on the art image is shown on
Figure 2(c).

We then move onto texture inpainting. We build a graph
Gy, on nodes Vs on the texture image. By working on the
graph domain we are able to represent projected nodes lying
on an irregular grid together with the grid nodes on the target
view, and convey a weighted measure of similarity between
known nodes, filled nodes and disocclusion holes. The edge
weight connecting nodes ¢ and j is determined as:

- P
w(%J)Z%exp—(AlWH%é) 5)
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for which d; ; is the 3D Euclidean distance between nodes
¢ and j, y(¢) and y(j) are the texture values on nodes ¢ and
j, and o4 and o, characterize the geometric and photomet-
ric spreads of the signal on graph, respectively. The tuning
parameters 7y, Ao and \; are determined as:

2 ifi,j eV
— init 6
7 {1 otherwise ©)
(1,0) ifi,jeW
AL Ao) = 7
(A1, 20) {(O, 1) otherwise 0

where V), represents the known nodes on the texture image
at the very beginning of the inpainting algorithm, i.e., the
initial set V. This parametrization, which has been tuned ex-
perimentally, ensures stronger connections with known nodes
in the initial texture image, and places higher influence on the
texture information when it is available. We further introduce
a binary diagonal mask M, which takes the value 1 for the
entries corresponding to the vertices in V; and 0 otherwise. We
then discard the disocclusion holes V,; C V, with the weakest
weights until Wal — 0.1 and obtain the final node set V,. We

Vsl
formulate our inpainting problem as follows:

min|| M (y(Vs) — Dz)||2  subject to ||z]jo < To  (8)

where y is the target signal, xz is a sparse coefficient
vector, D is a dictionary of graph atoms, and T} is a sparsity
threshold. The minimization function measures the error, while
the constraint ensures a sparse reconstruction with 7 atoms
of D, which is an overcomplete spectral graph dictionary. The
dictionary is learned on a set of training images [23], [24] and
it is able to effectively represent the most relevant features
of natural images represented as graph signals [2]. We solve
the problem given in (8) using the OMP algorithm [3] as it
often provides an effective trade-off between computational
complexity and quality of the sparse reconstruction. As we
fill the disocclusion holes in gf,s, we update the confidence
and mask values:

C(p)=C(H), Mp)=1 YpeV,nV, )
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Fig. 3. Top row: Art image with disocclusion holes, results of inpainting methods JTDI [14], DGDI [19] and our method respectively. Bottom row: Enlarged
ground truth and inpainting results of JTDI, DGDI, and our methods arranged in 3 groups corresponding to red, green and blue areas in top row, respectively.

With the mask update, we include the nodes \A/s NV in set
V1 and not in set Vy as they are no longer holes. We then
continue inpainting until Vo = 0.

The dictionary D in (8) has to be able to effectively rep-
resent the most relevant features of natural images on graphs.
We therefore propose to use here a spectral graph dictionary
learned on a set of training images. We form the dictionary as
a concatenation of subdictionaries that are polynomials of the
Laplacian £ of the graph G, as defined in [23], [24]. As the
atoms are constructed on a polynomial kernel, they are well
localized on the graph, which permits to effectively represent
the local characteristics of the target images. As an additional
atom to our learned dictionary we add the eigenvector of £
that corresponds to the smallest eigenvalue of £, which is
a constant valued vector analogous to the DC component of
signals [2]. We finally use the polynomial dictionary in order
to solve (8) and fill the disocclusion holes using the sparse
approximation of unknown signal values.

IV. EXPERIMENTS

We have evaluated the performance of our method by com-
paring our results with the exemplar based methods described
in Joint Texture-Depth Pixel Inpainting (JTDI) [14] and Depth-
Guided Disocclusion Inpainting (DGDI) [19] algorithms. JTDI
inpaints texture and depth images simultaneously while DGDI
first inpaints the depth image and guides the texture inpainting
using the full synthesized depth map. We have therefore
provided as input the disoccluded depth map to JTDI, and the
complete depth map we have synthesized using our depth map
inpainting method to DGDI. We also skip the split search and
dealing with object aliasing steps in [19] since they require
the use of the reference depth and texture images. In our case
of zooming in towards the scene we cannot use the reference
images as sources for exemplar or object boundary search, as
the texture of expanding objects do not have to be identical
with the reference texture.

We first learn the spectral graph dictionary as described
in [2] and [24]. After moving closer towards the scene, we
fill the expansion holes using the algorithm in [2] and move
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onto inpainting the disocclusion holes. At each iteration of
our inpainting method, we first search the disocclusion hole
boundary 0V, and find the pixel p with the highest priority
value according to equation (1). We then choose an initial
square area centered at p to inpaint. We fix the dimensions of
this area by selecting k = 9. We also fix the sparsity constraint
T} to be 10% of the total number of nodes |1>s| for each graph
Gy, - We test our algorithm on 12 images from the Middlebury
dataset [25] and present example visual results from Art image
in Figure 3. PSNR and SSIM [26] measurements are depicted
in Table I.

TABLE I
PSNR AND SSIM VALUES FOR THE INPAINTING OF TARGET VIEW
DISOCCLUSION HOLES USING METHODS JTDI [14], DGDI [19] AND OUR

METHOD.
PSNR SSIM
JIDI DGDI  Our method JTDI DGDI  Our method
Art 2534 26.15 26.53 0.8462  0.8498 0.8582
Baby 33.04 3278 32.68 0.9053  0.9011 0.9033
Books 2736 2697 27.27 0.8498  0.8445 0.8499
Bowling 29.09 3236 32.70 09252 0.9356 0.9412
Dolls 27.67  28.10 28.35 0.8738  0.8735 0.8764
Lampshade  32.17  33.95 33.73 0.9314  0.9392 0.9429
Laundry 2578  26.57 26.12 0.8591  0.8647 0.8599
Middlebury ~ 28.10  27.51 27.74 0.9229  0.9240 0.9276
Moebius 29.24 3047 30.31 0.8769  0.8853 0.8848
Monopoly 28.79  29.10 28.87 0.9103 09113 0.9120
Reindeer 26.94  28.19 27.82 0.8481  0.8649 0.8671
Rocks 29.84  30.08 30.27 0.8598  0.8613 0.8632

The graph representation combined with the spectral graph
dictionary in our regularization framework yields a consistent
inpainting of the disocclusion holes. Table I indicates our
SSIM measures are in general higher than the ones of the
competitor algorithms. Graph based representation provides
us with extra information compared to patch based methods,
since it preserves both grid nodes and projected nodes from
the reference image. By embedding the geometry of the scene
within the graph we are able to prevent layer blending and
bleeding of pixels at layer boundaries. Our learned spectral
graph dictionary has the advantage of preserving the common
spectral components of natural images, hence image comple-
tion is achieved with high quality.
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We see that JTDI suffers from layer blending, as there are
some foreground objects copied to the background in various
regions throughout the figures. The priority term still allows
foreground patches to be inpainted first, and exemplars are
copied regardless of their respective depth values resulting in
inconsistencies. DGDI overcomes this problem with a depth
aware confidence term, but performs worse than our method
on object boundaries, as can be seen on Figure 3. In [19]
authors propose to deal with object aliasing at boundaries
by using additional constraints on synthesized and reference
image geometries, however the arrangement of layers in our
framework is different due to the expansion and therefore this
approach cannot be employed in our zooming in problem.

Both JTDI and DGDI perform better at regions where there
are strong gradients to be propagated, with JTDI having more
artifacts due to foreground propagation. The tensor based data
term of DGDI prioritizes patches containing contours normal
to the disocclusion hole boundary, and exemplars continue
linear structures well. Our method fails to convey such strong
gradients, regardless of using a data term that prioritizes
contours. Future work is to overcome this weakness on areas
comprising strong gradients by favoring a combined approach
using our framework and exemplar based methods.

V. CONCLUSION

In this work, given a reference texture and depth image,
we have filled the disocclusion holes within a synthesized
viewpoint located closer the scene. We proposed a graph-based
framework which simultaneously embeds the topology of the
scene and signal values. The graph representation allowed
us to separate objects in different layers and consistently
propagate known signal values onto holes. We have used a
parametric dictionary trained on multiple graphs, with atoms
carrying the common characteristics of natural images. PSNR
and SSIM measures are comparable to state of the art methods.
Visual results show that our dictionary-based regularization
model under sparsity constraints is able to preserve the details
in the target view while preventing layer blending and bleeding
of pixels at layer boundaries.
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