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Abstract—One of the main research directions for 5G mobile
networks is resource virtualisation and slicing. Towards this goal,
the Cloud Radio Access Network (C-RAN) architecture offers
mobile operators a flexible and dynamic framework for managing
resources and processing data. This paper proposes a dynamic
allocation approach for processing resources in a C-RAN sup-
ported by the concept of Network Function Vitualisation (NFV).
To achieve this objective, we virtualised the Baseband Unit (BBU)
resources for Long Term Evolution (LTE) mobile network into a
BBU pool supported by Linux Container (LXC) technology. We
report on experiments conducted in the Iris testbed with high-
definition video streaming by implementing Software-Defined
Radio (SDR)-based LTE functionality with the virtualised BBU
pool. Our results show a significant improvement in the quality
of the video transmission with this dynamic allocation approach.

Index Terms—C-RAN, NFV, container, 5G, testbed

I. INTRODUCTION

C-RAN is a mobile network architecture where the BBUs of
a group of base stations are separated from the Remote Radio
Heads (RRHs), and processing is moved to a centralised BBU
pool in a cloud-based computing centre [1]. NFV functionality
can be implemented at the C-RAN central office, with the sup-
port of dynamic resource allocation. This enables the flexible
assignment of different amounts of computational resources to
different BBUs. In this way, computational resources for each
BBU can be tailored to the requirements of applications in real
time, in order to optimize overall resource utilisation. It is hard
to achieve this dynamic allocation with Application-specific
Integrated Circuits (ASICs). Therefore, more flexible BBU
implementations in software have emerged to bring flexibility
and dynamicity.

In this paper we design and implement an SDR-based
prototype to dynamically allocate computational resources in
a BBU pool for C-RAN. The objective is to demonstrate
its benefit in terms of an increase in the performance of
high throughput applications, e.g. High Definition (HD) video
streaming. We use LXC technology to achieve NFV on a
Linux-based BBU-pool system.

The connection between BBUs and RRHs in a C-RAN is
referred to as the mobile fronthaul [2]. The mobile fronthaul in
C-RAN can be implemented by a wireless-optical integrated
network, where the optical access network (in particular,
Passive Optical Networks (PON) [3]) is used for connecting
the BBUs and RRHs. The optical fibre fronthaul system is
capable of providing more bandwidth than traditional copper

systems, meeting the high bandwidth-consuming I/Q sample
transmission for the C-RAN.

This paper reports on an experiment that illustrates how
dynamic allocation of processing resources improves the per-
formance of C-RAN, especially for high-intensity processing
applications. We use an HD video stream via an LTE base
station as an example of a processing-intensive application.
In order to transmit HD videos over the air, the BBUs
for the LTE base station require a higher Modulation and
Coding Scheme (MCS) index, corresponding to higher spectral
efficiency and throughput. The higher MCS index also brings
higher computational complexity to the BBUs. Our dynamic
allocation scheme can assign more CPU resources to the
BBU pool in real time without breaking the LTE transmission
links. Furthermore, when the traffic demand decreases, we can
release computational resources originally assigned to BBUs,
and reduce power consumption.

This paper is organized as follows: Section II discusses
the use cases and the background for this work, including a
brief literature review. Section III introduces the Iris testbed
at Trinity College Dublin, which is one of the testbeds partici-
pating in the FUTEBOL project and supports this experiment.
Section IV discusses the experimental results for our proposed
dynamic resource allocation approach. Section V concludes
this paper and discusses potential future work.

II. USE CASES AND BACKGROUND

Virtualisation and resource sharing are expected to play
important roles for flexible usage of network resources in
next generation mobile networks [4], adopting the concept
of NFV [5]. To fulfil the system requirements of different
verticals (i.e., different use cases in terms of network design
and planning), multiple isolated virtualised network functions
have to be selected and connected together. Therefore, research
problems such as resource allocation and load balancing
emerge to address the challenge of high computational require-
ment and limited amount of resources.

The centralisation of BBUs allows for the flexible control
and management of virtualised resources. When the BBU
processing is moved away from the antennae, the traditional
backhaul of the mobile base station system changes from
transmitting backhaul data to transmitting I and Q samples
that are obtained/sent directly from/to antennae after/before
AD/DA conversion. These changes, which take place on the
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transmissions between BBUs and RRHs for C-RAN, represent
a new transmission system called the mobile fronthaul [2].

In this paper, we investigate the adoption of the NFV
concept for C-RAN processing. The BBU pool is virtualised
and each individual BBU can be implemented in software
and encapsulated inside a container. Multiple containers share
the computational resources of one physical machine. These
containers are supported by a cloud-based virtual machine
system and an LXC hypervisor, implemented in the SDR Iris
testbed in Trinity College Dublin [6]. The containerised BBUs
form a pool that can be controlled by a central controller. The
controller is capable of dynamically reallocating resources to
each BBU container running on the same physical machine.

These LXC containers, whose computational resources are
capable of being reassigned dynamically (as introduced in
Section IV), can also support the migration from one virtual
machine to another (or even from one physical machine to
another) in real time. This functionality, called live migra-
tion of containers, can support dynamic network function
exchange. The live migration of BBU elements is challenging
to implement in real time due to the strict latency requirement
for baseband processing in the LTE standard. However, live
migration of Evolved Packet Core is feasible, enabling flexible
management of the LTE backhaul.

Several recent works in the literature address virtualisation
and resource allocation in C-RAN. For instance, authors in
[7]–[10] all focus on the resource allocation for C-RAN,
especially virtualised computational resources for a BBU
pool. However, none of these works has performed an actual
implementation-based investigation into the virtualisation and
dynamicity of resource allocation required. In this paper, in
contrast, we have built an SDR-based C-RAN prototype to
demonstrate and evaluate the performance of dynamic alloca-
tion of computing resources in response to the requirements
of each BBU.

III. FUTEBOL TESTBED INFRASTRUCTURE

The FUTEBOL project [11] focuses on experimental re-
search in the area of wireless-optical network convergence.
Another important goal of the project is to make advanced
wireless and optical research testbeds across European and
Brazilian institutions federated and open to external scientific
researchers. Towards these goals, the project is developing a
control framework that supports the orchestration and manage-
ment of physical and virtualised network resources in both the
wireless and optical domains, such as virtual machines, SDN
switches, optical devices, and USRP reconfigurable radios in
multiple federated testbeds in parallel. In the Iris testbed, at
Trinity College Dublin, we are contributing to this objective by
exploring the dynamic reallocation of available computational
resources to containers on demand.

A. Iris Testbed

Iris, the reconfigurable radio testbed at Trinity College
Dublin, offers virtualised radio hardware to support the exper-
imental investigation of resource allocation and orchestration

in future wireless networks. This facility pairs flexible radio
equipment and computational resources with various hyper-
visors in the form of software-defined radio frameworks to
realize different testing configurations. These platforms are
connected to a computational cloud, allowing users to deploy
an array of computational environments.

Iris can be thought of as having five functional layers, as
illustrated in Fig 1. These include:

• Functional elements: The bottom layer provides the phys-
ical resources, such as servers, switches, USRPs, storage,
CPU, memory, and so forth.

• Virtualised experimental resources: The next layer cor-
responds to the virtualized testbed resources allocated to
the experimenter for a specific time frame. It is composed
of virtual machines images, real server resources, and
physical radio equipment.

• Hypervisor: To expose the functionality of physical
equipment for applications, Iris employs a variety of
hypervisors including the Kernel-based Virtual Machine
(KVM), and LinuX Containers (LXC). This layer pro-
vides support for open source SDR elements such as
GNU Radio and srsLTE [12], an open-source imple-
mentation of the 3GPP LTE base stations and User
Equipments (UEs). This layer also provides support for
lightweight LXC, LXD, and Docker containers.

• Slices: This layer abstracts the slicing taking place on the
network by SDN controllers, at the radio by the SDRs,
and at the operating system by hypervisors.

• Experiments: The final layer sits at the top and is defined
by the experimenter. It provides the experiment definition
that will utilise the resources offered by the lower layers.

Iris’s Cloud Based Testbed Manager (CBTM) allocates
experimentation units across these functional layers, by sup-
porting the creation of virtual machine images in physical rack
servers. The principal responsibility of the CBTM is to instan-
tiate available virtual machines and USRP radios in servers,
where users can run experiment-specific software. Further-
more, Iris’s CBTM facility offers support for other operating-
system-level virtualization frameworks. This is achieved by
providing experimenters with a virtual machine image with
hypervisor capabilities.

For example, experimenters can use the LXC hypervisor
to run lightweight Linux containers, which is available as a
virtual machine image at Iris. Experimenters have complete
control over features including the LXC Linux c-groups (con-
trol groups) kernel, which isolates, limits, and provides ac-
counting for resource usage, and the namespace Linux kernel
feature, which supports the complete isolation of virtualised
system resources from containers including the process tree,
filesystems, hostnames, process IDs, and network access. Both
are fundamental for the support of containers on Linux.

The dynamic processing resource allocation research prob-
lem investigated in this paper illustrates some of the benefits
of reallocating system resources to containers by modifying
c-group rules on the LXC hypervisor.
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Fig. 1. Iris testbed functional layers.

IV. EXPERIMENT AND RESULTS

We have designed and implemented a video-streaming ex-
periment running in the Iris SDR testbed to evaluate the benefit
of dynamic resource allocation for a virtualised BBU pool.
The BBU pool is installed in containers and the computational
resources (Central Processing Unit (CPU) cores, or CPUs for
short in this paper) of the BBU pool can be dynamically
allocated. As shown in Fig. 2, we have implemented two SDR-
based LTE BBUs inside an LXC container as a prototype
for experimentation. The SDR-based LTE BBU adopts the
open-source srsLTE software, which provides physical layer
downlink data transmission from eNodeB to UE. The two
RRHs are implemented in USRP B210s [13], which are
programmable and reconfigurable radios. Two RRHs work
in different frequency channels (2.4 GHz and 2.48 GHz),
with a sufficiently wide guard band to eliminate interference
that might affect the results. The physical transmission link
between the BBUs and RRHs is USB 3.0, playing the part
of the fronthaul. The throughput of USB 3.0 can reach up
to 5 Gbps, meeting the LTE sampling rate requirement. The
USB physical links can potentially be replaced by an optical
fibre transmission system, in order to increase the fronthaul

bandwidth. This is planned as future work.
As shown in Fig. 2, we stream high definition video over the

air to evaluate the performance of the container-based BBU
system. The video file is converted into a data stream by the
software “avconv” [14], and sent through a local TCP port
to the srsLTE software (i.e., the LTE BBU). The BBU is
a single thread process and cannot be parallelised to utilise
two processors. In other words, in our system, one BBU
process can be assigned to only one CPU. Therefore, in
order to observe the effect of under-loading/over-loading of
computational resources, in our experiment we develop two
BBUs inside one LXC container, and assign one or two CPUs
to this container to observe the performance changes. During
our experiment, we have observed that, once an extra CPU is
assigned to the container, one out of the two BBU processes
that are running on the previous CPU will automatically move
to the new assigned CPU, thanks to the fairness policy that
we set for load balancing of each CPU. The whole procedure
only takes 12 milliseconds.

On the other side of the testbed, two UEs are also imple-
mented by SDR with srsLTE software and USRP B210s. The
software “avplay” is installed on the hosting machines of the
UEs to play the received video stream, as well as to collect
the statistics of video streaming, e.g., received data, frames
dropped, etc. [15].

In order to stream videos with high definition, more
throughput is needed from the LTE network. If we fix the
number of Physical Resource Blocks (PRBs) assigned to the
wireless channel, one way to increase the throughput is to
increase the MCS index to higher orders. According to the
3GPP LTE standards, the MCS index defines the Transport
Block Size (TBS) (in bits), and the throughput of the LTE
links can be derived from the TBS by the following equation
[16]: Throughput = TBS ∗ 1000/s.

However, different levels of MCS index also affect the
computational load of the SDR-based BBU. Therefore, if
the computational resources are not sufficient to support the
baseband processing of high MCS, the SDR system will be
overloaded and the data will not be successfully transmitted
over the air interface. In this case, frame dropping will
be observed at the receiver side. The srsLTE SDR system
allows us to change the MCS in real time (i.e. less than a
subframe length (1ms) without any data loss). Therefore the
computational load of a BBU can be changed in real time
by changing the MCS index, providing the opportunity for
us to investigate the benefit brought by the dynamic resource
allocation. The dynamic resource allocation can balance the
computational load for the BBUs in a BBU pool, so that high
throughput can be guaranteed without any blocking that would
be caused by overloaded CPUs.

Based on the testbed setup shown in Fig. 2 and the afore-
mentioned concepts regarding MCS index, throughput and
computational resources, we have designed a video streaming
experiment for a duration of 100 seconds to test the per-
formance of dynamic resource allocation. Table I describes
the procedure for the experiment. From 0 to 60 seconds,
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Fig. 2. The experiment setup for the dynamic resource allocation of BBU pool.

we gradually increase the MCS index every 20 seconds and
therefore the throughput increases. However, the CPU that is
assigned to these two BBUs becomes overloaded and buffering
interruptions start occurring on the video stream. Then we add
an extra CPU to the container at the 80th second to determine
whether the performance can be improved.

The block diagram of the experiment for dynamic process-
ing resource allocation is shown in Fig. 3. We implement the
timer that defines the timing for changing the allocation of
CPUs to the container. It talks to the CPU resource scheduler
that we implemented in Python and Linux shell scripts to
make the changes. The scheduler is capable of reassigning
different numbers of CPUs to the container. Furthermore, we
have implemented the BBUs and USB 3.0 interface bridges
inside the container in order to make the physical hardware
interfaces accessible from the containers, so that the virtualised
BBUs inside the container are capable of exchanging data with
the RRHs through USB 3.0 (i.e. the fronthaul).

Timer

CPU resource 
scheduler

USB 
interface  
bridge 1

srsLTE
BBU 1

Video 
server 1

srsLTE
BBU 2

Video 
server 2

USB 
interface  
bridge 2
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Fig. 3. Block diagram of the experiment.

TABLE I
THE EXPERIMENTAL PROCEDURE OF CHANGING MCS INDEX AND

NUMBER OF CPUS ASSIGNED TO THE BBU POOL

Time (s) MCS index Modulation TBS(bit) No. of CPUs
0 4 QPSK 1800 1
20 10 16QAM 4008 1
40 17 64QAM 7736 1
60 24 64QAM 13536 1
80 24 64QAM 13536 2

Fig. 4 shows, as a function of experiment time, the amount
of data successfully received by one of the two UEs through
the air interface, while Fig. 5 shows the number of frame
drops for the same UE. We show results for only one UE, as
the results for the other are nearly identical. As described in
Table I, the parameter changing period is every 20 seconds (s).
We use 1080p, 60 fps video for streaming. The air interface
utilises 25 PRBs.

Results show that during the 0-10 seconds period, the video
data is successfully transmitted, received and buffered at the
receiver side. The amount of data buffered at the UE during
the 0-10 seconds period is enough for the video player to play
the whole 0-20 seconds period without any frame drops: the
video playing is smooth. Therefore, during the 10-20 seconds
period there is no data received by the UE but the video keeps
playing. Then we change the MCS index from 4 (QPSK)
to 10 (16QAM) at t = 20 seconds: some frame drops are
observed from 20-23 seconds due to the re-synchronization
between UE and eNodeB when the MCS index changes in
the LTE software. During the 23-40 seconds period, most of
the video data is still successfully received and buffered and
the video playing goes on, albeit with some discontinuities of
video frames starting from t = 30 seconds. This is due to the
fact that more computational resources are needed for 16QAM,
compared to QPSK, and the CPU starts to become overloaded.
Note that frame drops occur between 30-40 seconds. There is
no frame dropping between 20-30 seconds because some data
is pre-buffered during the 0-20 seconds period.

During the periods of 40-60 and 60-80 seconds we continue
to increase the MCS index from 10 (16QAM) to 17 (64QAM),
and then to 24 (64QAM, but with higher TBS). More intensive
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computation is required for the higher modulation order,
and the single CPU being used for both BBUs gets heavily
overloaded and the UE can barely receive any data. The video
streaming almost stops during these two time periods. Finally,
from t = 80 seconds onwards we assign an additional CPU to
the BBU pool, so that one BBU is shifted to the new CPU,
and the two BBUs are working on separate CPUs. In this
case the computational load for each CPU drops significantly.
Therefore, after a couple of seconds transition period, from
around t = 84 seconds onwards no frames are dropped and
the data transmission completes successfully. The allocation
of an additional CPU resource takes only 12 milliseconds but
the transition period is as long as 4 seconds, due to the re-
synchronization between UE and eNodeB in the LTE software,
which causes some packet loss. We will strive to shorten the
transition time in our future work by improving the SDR-based
LTE BBU system.

Fig. 4. Received data during the experiment.

Fig. 5. Data frames dropped during the experiment.

V. CONCLUSIONS AND FUTURE WORK

In this paper we describe the implementation and evaluation
of dynamic processing resource allocation for the BBU pool

of a C-RAN. We use the concept of NFV to manage the
BBU pool by implementing the BBUs inside LXC containers,
in our Iris SDR testbed. An experimental evaluation of HD
video transmission using different modulation orders shows
the benefit of dynamic resource allocation for balancing the
load of processors.

Under the framework of the FUTEBOL project, more
experiments related to network virtualisation are planned. In
addition to the dynamic processing and resource allocation
approach introduced in this paper, we are also investigating
the feasibility and use cases for low-latency live migration
of containers. The implementation of live container migration
will offer additional opportunities to support NFV in more
verticals.
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