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ABSTRACT
This work develops a fully decentralized variance-reduced learning
algorithm for multi-agent networks where nodes store and process
the data locally and are only allowed to communicate with their im-
mediate neighbors. In the proposed algorithm, there is no need for a
central or master unit while the objective is to enable the dispersed
nodes to learn the exact global model despite their limited localized
interactions. The resulting algorithm is shown to have low memory
requirement, guaranteed linear convergence, robustness to failure of
links or nodes and scalability to the network size. Moreover, the de-
centralized nature of the solution makes large-scale machine learn-
ing problems more tractable and also scalable since data is stored
and processed locally at the nodes.

Index Terms— diffusion strategy, variance-reduction, stochas-
tic gradient descent, memory efficiency, SVRG, SAGA, AVRG.

1. INTRODUCTION
This paper considers the empirical risk minimization (ERM) prob-
lem over a network. Consider a connected network withK nodes. If
agent k stores local data samples {xk,n}Nk

n=1, where Nk is the size
of the local samples, then the data stored by the entire network are:

{xn}Nn=1
∆
=
{
{x1,n}N1

n=1, · · · , {xK,n}
NK
n=1

}
, (1)

where N =
∑K
k=1 Nk is the size of all data within the network.

Note that we are allowing for different (uneven) amount of samples
at various nodes. We then consider minimizing an empirical risk
function, J(w), which is defined as the sample average of loss values
over all observed data samples, i.e.,

w?
∆
= arg min

w∈RM

J(w) =
1

N

N∑
n=1

Q(w;xn) (2)

Here, Q(w;xn) denotes the loss value evaluated at w and the n-th
sample, xn. For convenience, we introduce the local empirical risk
function, Jk(w), which is the sample average of loss values over the
local data samples stored at node k, i.e., over {xk,n}Nk

n=1:

Jk(w)
∆
=

1

Nk

Nk∑
n=1

Q(w;xk,n). (3)

Using the local empirical risk functions, it can be verified that

1

N

N∑
n=1

Q(w;xn)
(1)
=

1

N

K∑
k=1

Nk∑
n=1

Q(w;xk,n)
(3)
=

K∑
k=1

Nk
N
Jk(w), (4)

and hence the original global optimization problem (2) can be re-
formulated as the equivalent problem of minimizing the weighted
aggregation of K local empirical risk functions:
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w?
∆
= arg min

w∈RM

J(w) =

K∑
k=1

qkJk(w), (5)

where qk
∆
= Nk/N . Problem (5) are typical in multi-agent set-

tings, where dispersed agents collect its own data and are interested
in learning w? in a decentralized manner. Each node is assigned a
local computation task and the objective is to enable the nodes to
learn the global solution w?. In this work we develop a fully de-
centralized algorithm where nodes process the data locally and are
allowed to communicate only with their immediate neighbors. The
following assumptions are standard in the decentralized optimization
literature, and some common risk functions such as linear regression,
`2-induced logistic regression satisfy these assumptions.

Assumption 1 The loss function, Q(w;xn), is convex, twice-
differentiable, and has a δ-Lipschitz continuous gradient, i.e., for
any w1, w2 ∈ RM and 1 ≤ n ≤ N :

‖∇wQ(w1;xn)−∇wQ(w2;xn)‖ ≤ δ‖w1 − w2‖ (6)
where δ > 0. Moreover, there exists at least one loss function
Q(w;xno) that is strongly convex, i.e.,

∇2
wQ(w;xno) ≥ νIM > 0, for some no. (7)

1.1. Related Work
There has been an extensive body of research on solving optimiza-
tion problems of the form (5) in a fully decentralized manner. Some
recent works include techniques such as EXTRA [1], DIGing [2] and
Exact diffusion [3, 4]. These methods provide linear convergence to
the exact minimizer, w?. However, all these methods require the
evaluation of the true gradient ∇Jk(w) at each iteration. It is seen
from definition (3) that this computation can be prohibitive for large-
data scenarios where Nk can be large.

One can replace the true gradient by a stochastic gradient ap-
proximation, as is commonplace in traditional diffusion or consen-
sus algorithms [5–7]. While this solution method is efficient, it con-
verges linearly only to a small O(µ)−neighborhood around the ex-
act solution w? where µ is the constant step-size. However, one can
employ variance-reduced techniques to enable convergence to the
exact minimizer. One such proposal is the DSA method [8], which
is based on the SAGA method [9]. However, similar to SAGA, the
DSA method suffers from the same huge memory requirement since
each node k will need to store an estimate for each possible gradi-
ent {∇Q(w;xk,n)}Nk

n=1. This requirement is a burden when Nk is
large, as happens in applications involving large data sets.

1.2. Contribution
This paper derives a fully-decentralized variance-reduced stochastic-
gradient algorithm with both linear convergence guarantees and sig-
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nificantly reduced memory requirements. We refer to the technique
as the Diffusion-AVRG method (where AVRG stands for “amortized
variance-reduced gradient” technique [10, 11]). Unlike DSA and
SAGA, this method does not require extra memory to store gradi-
ent estimates. The proposed method also has balanced computations
for each iteration, which is different from the well-known alterna-
tive to SAGA known as SVRG [12]. The SVRG method has an
inner loop to perform stochastic variance-reduced gradient descent
and an outer loop to calculate the true local gradient. These two
loops complicate decentralized implementations when data is un-
evenly distributed across the nodes. In comparison, the proposed
AVRG construction works efficiently for such scenario. Moreover,
the proposed method applies to any connected network while other
stochastic implementations [14,15] are limited to star network archi-
tectures.

2. DIFFUSION–AVRG ALGORITHM FOR BALANCED
DATA DISTRIBUTIONS

2.1. Exact Diffusion Optimization
One effective decentralized method to solve problem (5) is the Exact
diffusion strategy [3, 4]. To implement this algorithm, we need to
associate a combination matrix A = [a`k]K`,k=1 with the network
graph, where a positive weight a`k is used to scale data that flows
from node ` to k if both nodes happen to be neighbors. In this paper
we assume A is symmetric and doubly stochastic, i.e.,

a`k = ak`, A = AT and A1K = 1K (8)
where 1 is a vector with all unit entries. We further introduce µ as
the step-size parameter for all nodes, and let Nk denote the set of
neighbors of node k (including node k itself).

The exact diffusion algorithm [3, 4] is listed in (9)–(11). The
subscript k refers to the node while the subscript i refers to the it-
eration. It is proved in [4] that the local variables wk,i converge to
the exact minimizer of problem (5), w?, at a linear convergence rate
under relatively mild conditions.

Algorithm 1 (Exact diffusion strategy for each node k) [3, 4]

Let A = (IN + A)/2 and a`k = [A ]`k. Initialize wk,0 arbitrarily,
and let ψk,0 = wk,0.
Repeat iteration i = 1, 2, 3 · · · until convergence

ψk,i+1 = wk,i − µ qk∇Jk(wk,i), (9)

φk,i+1 = ψk,i+1 + wk,i − ψk,i, (10)

wk,i+1 =
∑
`∈Nk

a`kφ`,i+1. (11)

2.2. Diffusion-AVRG

Note that in step (9) each agent needs to evaluate its ∇Jk(wk,i),
which can be expensive when Nk is huge. To save computa-
tions, one can select a random data sample xni,k and approxi-
mate ∇Jk(wk,i) by ∇̂Jk(wk,i) = ∇Q(wk,i;xni,k) as shown
in [5, 6]. However, the presence of the gradient noise variance
E‖∇̂Jk(wk,i) − ∇Jk(wk,i)‖2 drives convergence towards an
O(µ)-neighborhood around w?.

To correct the O(µ)-bias, we propose to approximate ∇Jk(w)
with a variance-reduced stochastic gradient. We first consider the
scenario in which all nodes store the same amount of local data,

Algorithm 2 (Diffusion-AVRG at node k for balanced data)

Initialize w0
k,0 arbitrarily; let ψ0

k,0 = w0
k,0, g0

k = 0, and
∇Q(w0

0;xk,n)← 0, 1 ≤ n ≤ sN
Repeat epoch t = 0, 1, 2, · · ·
h generate a random permutation function σtk and set gt+1

k = 0.
h Repeat iteration i = 0, 1, · · · , sN − 1:

nti = σtk(i+ 1), (15)

∇̂Jk(wt
k,i) = ∇Q(wt

k,i;xk,nt
i
)−∇Q(wt

k,0;xk,nt
i
) + gtk, (16)

gt+1
k ← gt+1

k +
1
sN
∇Q(wt

k,i;xk,nt
i
), (17)

updatewt
k,i+1 with exact diffusion:

ψtk,i+1 = wt
k,i − µ∇̂Jk(wt

k,i), (18)

φtk,i+1 = ψtk,i+1 +wt
k,i −ψtk,i, (19)

wt
k,i+1 =

∑
`∈Nk

a`kφ
t
`,i+1. (20)

hh End
hh setwt+1

k,0 = wt
k,ĎN and ψt+1

k,0 = ψtk,ĎN
End

i.e., N1 = · · · = NK = sN = N/K. To reduce variance, we
approximate∇Jk(w) in the form of

∇̂Jk(wt
k,i) = ∇Q(wt

k,i;xnt
i
)−∇Q(wt

k,0;xnt
i
) + gtk, (12)

where the superscript t is the epoch index, subscript i is the inner
recursion index, and the auxiliary variable gtk is used to help reduce
the variance. Inspired by our recent work on an amortized variance-
reduced gradient method (AVRG) [10, 11], the variable gt+1

k can be
updated in a recursive manner at each inner iteration i:

gt+1
k ← gt+1

k +
1
sN
∇Q(wt

k,i;xk,nt
i
). (13)

It can be proved that that when nti is sampled without replacement,
the stochastic gradient shown in (12) has vanishing variance. Specif-
ically, it is proved in the extended version [13] of this paper that

E‖∇̂Jk(wt
k,i)−∇J(wt

k,i)‖2

≤ 6δ2E‖wt
k,i −wt

k,0‖2 +
3δ2

sN

ĎN−1∑
j=0

E‖wt−1
k,j −w

t−1
k,ĎN
‖. (14)

Suppose it holds for any i ∈ [0, sN ] that E‖wt
k,i − w?‖2→ 0 when

t → ∞. It then follows that E‖wt
k,i −wt

k,0‖ → 0 and E‖wt−1
k,j −

wt−1
k,ĎN
‖ → 0, which implies E‖∇̂Jk(wt

k,i)−∇J(wt
k,i)‖2→ 0 by

(14). In other words, the stochastic gradient (12) will perform as
true gradient as wk,i converges to w?, which is the intuition why
Diffusion-AVRG will converge to the exact solution of problem (5).

Diffusion-AVRG is listed in Algorithm 2. At inner iteration i,
each node k will first generate an amortized variance-reduced gradi-
ent ∇̂Jk(wt

k,i) via (15)–(17), and then apply exact diffusion (18)–
(20) to update wt

k,i+1. Unlike DSA [8], this algorithm does not
require extra memory to store gradient estimates.
Remark 1. It is also possible to use SVRG [12] rather than AVRG
to generate the variance-reduced gradient ∇̂J(wk,i). In SVRG, it is
suggested to set gtk as

gtk =
1
sN

ĎN∑
n=1

∇Q(wt
k,0;xn), (21)
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where all ∇Q( · ;xn)’s are evaluated at the same point wk,0. The
construction of gtk in (21) indicates that SVRG has to maintain an
outer loop to calculate gtk in advance, which is different from AVRG
in which the calculation of gtk is amortized into each inner iteration.
The fact that gtk has to be updated in an offline manner (21) rather
than the online manner (13) in SVRG will cause issues for scenarios
in which local data sizes Nk differ from each other, as discussed in
Sec. 3. �
Remark 2. Diffusion-AVRG is more computation efficient than ex-
act diffusion, but this computational advantage comes with extra
communication costs. Note that Diffusion-AVRG will communicate
after calculating only one stochastic gradient. Thus, in order to reach
the same accuracy, Diffusion-AVRG will generally need more iter-
ations than exact diffusion, which results in more communications.
However, the computation-communication issue can be leveraged by
the mini-batch strategy. From the simulations in [13], it is observed
that Diffusion-AVRG with proper mini-batch size can be more com-
putation efficient while maintaining almost the same communication
efficiency as exact diffusion. �

2.3. Convergence

Recursions (18)–(20) of Algorithm 2 only involve local variables
wt
k,i, φ

t
k,i and ψtk,i. To analyze the convergence of all {wt

k,i}Kk=1,
we need to combine all iterates from across the network into ex-
tended vectors. To do so, we introduce

W
t
i = col{wt

1,i, · · · ,wt
K,i}, φti = col{φt1,i, · · · ,φ

t
K,i} (22)

ψti = col{ψt1,i, · · · ,ψ
t
K,i}, A = A⊗ IM (23)

∇J (Wt
i) = col{∇J1(wt

1,i), · · · ,∇JK(wt
K,i)} (24)

∇̂J (Wt
i) = col{∇̂J1(wt

1,i), · · · , ∇̂JK(wt
K,i)} (25)

where ⊗ is the Kronecker product. With the above notation, for
0 ≤ i ≤ sN − 1 and t ≥ 0, recursions (18)–(20) can be rewritten as

ψti+1 = Wt
i − µ∇̂J (Wt

i),

φti+1 = ψti+1 + Wt
i −ψti,

Wt
i+1= Aφti+1,

(26)

where we let ψt+1
0 = ψt

ĎN and Wt+1
0 = Wt

ĎN for new epoch t + 1.
By substituting the first and second equations of (26) into the third
one, it holds for 1 ≤ i ≤ sN and t ≥ 0 that:

W
t
i+1 =A

(
2W

t
i−W

t
i−1−µ[∇̂J (Wt

i)−∇̂J (Wt
i−1)]

)
, (27)

where we let Wt+1
0 = Wt

ĎN and Wt+1
1 = Wt

ĎN+1 for epoch t + 1.
It is observed that recursion (27) involves two consecutive variables
Wt
i and Wt

i−1, which complicates the analysis. To deal with this is-
sue, we introduce the eigen-decomposition 1

2K
(IK − A) = UΣUT

where Σ is a nonnegative diagonal matrix (note that IK − A is pos-
itive semi-definite because A is doubly stochastic), and U is an or-
thonormal matrix. We also define V = UΣ1/2UT and V = V ⊗IM .
Note that V and V are symmetric matrices. It can be verified (see
Appendix A in [13]) that recursion (27) is equivalent toW

t
i+1 = A

(
W
t
i − µ∇̂J (Wt

i)
)
−KVY

t
i

Y
t
i+1 = Y

t
i + VW

t
i+1

(28)

where Yti ∈ RKM is the auxiliary variable with initialization Y0
0 =

0. We denote the gradient noise by
s(Wt

i) = ∇̂J (Wt
i)−∇J (Wt

i). (29)

Substituting into (28), we getW
t
i+1 = A

(
W
t
i−µ∇J (Wt

i)
)
−KVY

t
i − µA s(Wt

i)

Y
t
i+1 = Y

t
i + VW

t
i+1

(30)

In summary, recursions (18)–(20) are equivalent to (30). Let W̃
t
i =

W? − Wt
i and Ỹ

t
i = Y? − Yti denote error vectors relative to the

solution pair (W?, Y?). It is proved in Appendix B from [13] that
recursion (30), under Assumption 1, can be transformed into the fol-
lowing linear recursion perturbed by a gradient noise term:[

W̃
t
i+1

Ỹ
t
i+1

]
= (B − µT t

i)

[
W̃
t
i

Ỹ
t
i

]
+ µBls(Wt

i), (31)

where 0≤ i≤ sN − 1, t ≥ 0, and W̃
t+1
0 = W̃

t
ĎN , Ỹ

t+1
0 = Ỹ

t
ĎN after

epoch t. Moreover, B,Bl and T t
i are defined as

B ∆
=

[
A −KV
VA A

]
, Bl

∆
=

[
A
VA

]
, T t

i
∆
=

[
AHt

i 0

VAHt
i 0

]
, (32)

where
Ht
i = diag{Ht

1,i, · · · ,Ht
K,i} ∈ RKM×KM , (33)

Ht
k,i

∆
=

∫ 1

0

∇2Jk
(
w?−rw̃t

k,i

)
dr ∈ RM×M . (34)

To facilitate the convergence analysis of recursion (31), we diago-
nalize B and transform (31) into an equivalent error dynamics. From
equations (64)–(67) in [4], we know thatB admits the decomposition

B ∆
= XDX−1, (35)

where X ,D and X−1 are matrices defined as

D ∆
=

 IM 0 0
0 IM 0
0 0 D1

 ∈ R2KM×2KM , (36)

X ∆
=
[
R1 R2 XR

]
∈ R2KM×2KM , (37)

X−1 ∆
=

 LT
1

LT
2

XL

 ∈ R2KM×2KM . (38)

In (36), matrix D1 = D1 ⊗ IM and D1 ∈ R2(K−1)×2(K−1) is a
diagonal matrix with ‖D1‖ = λ2(A)

∆
= λ < 1. In (37) and (38),

matricesR1,R2, L1 and L2 take the form

R1 =

[
1K
0K

]
⊗ IM , R2 =

[
0K
1K

]
⊗ IM (39)

L1 =

[
1
K
1K

0K

]
⊗ IM , L2 =

[
0K

1
K
1K

]
⊗ IM (40)

Moreover, XR ∈ R2KM×2(K−1)M and XL ∈ R2(K−1)M×2KM are
some constant matrices. Since B is independent of sN , δ and ν, all
matrices appearing in (35)–(38) are independent of these variables as
well. By multiplying X−1 to both sides of recursion (31), we have

X−1

[
W̃
t
i+1

Ỹ
t
i+1

]
(35)
=
(
D−µX−1T t

iX
)(
X−1

[
W̃
t
i

Ỹ
t
i

])
+µX−1Bls(Wt

i) (41)

Now we define X̄ ti
X̂
t
i

X̌ ti

 ∆
= X−1

[
W̃
t
i

Ỹ
t
i

]
(38)
=

 LT
1

LT
2

XL

[ W̃
t
i

Ỹ
t
i

]
, (42)

as transformed errors. Moreover, we partition XR as

XR =

[
XR,u
XR,d

]
, where XR,u ∈ RKM×2(K−1)M . (43)
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With recursion (41), we can establish the following lemma.
Lemma 1 (USEFUL TRANSFORMATION) When Y0

0 is initialized at
0, recursion (31) can be transformed into[

X̄ ti+1

X̌ ti+1

]
=

[
IM−µK I

THt
iI − µ

K
ITHt

iXR,u
−µXLT t

iR1 D1−µXLT t
iXR

][
X̄ ti

X̌ ti

]
+µ

[ 1
K
IT

XLBl

]
s(Wt

i)

(44)

where I = 1K ⊗ IM . Moreover, the relation between W̃
t
i, Ỹ

t
i and

X̄ ti, X̌
t
i in (41) reduces to[

W̃
t
i

Ỹ
t
i

]
= X

 X̄ ti

0M

X̌ ti

 . (45)

Notice that XL, XR, XR,u and X are all constant matrices and in-
dependent of sN, δ and ν.
Proof. See Appendix C in [13]. �

In the next lemma we bound the gradient noise E‖s(Wt
i)‖2.

Lemma 2 (GRADIENT NOISE) Under Assumption 1, the second
moment of the gradient noise term satisfies:

E‖s(Wt
i)‖2

≤ 6bδ2E‖X̄ ti − X̄
t
0‖2 + 12bδ2E‖X̌ ti‖2 + 18bδ2E‖X̌ t0‖2

+
3bδ2

sN

ĎN−1∑
j=0

E‖X̄ t−1
j −X̄

t−1
ĎN
‖2+6bδ2

sN

ĎN−1∑
j=0

E‖X̌ t−1
j ‖2, (46)

where b is a positive constant that is independent of sN , ν and δ.
Proof. See Appendix E in [13]. �

In the following, we will exploit the error dynamic (44) and
the upper bound (46) to establish the convergence of E‖X̄ ti‖2 and
E‖X̌ ti‖2. To simplify the notation, we define

At ∆
=

1
sN

ĎN−1∑
j=0

E‖X̄ tj − X̄
t
0‖2, Bt ∆

=
1
sN

ĎN−1∑
j=0

E‖X̄ tj − X̄
t
ĎN‖

2,

Ct ∆
=

1
sN

ĎN−1∑
j=0

E‖X̌ tj‖2. (47)

All these quantities appear in the upper bound in (46).
Theorem 1 (LINEAR CONVERGENCE) Under Assumption 1, if the
step-size µ satisfies

µ ≤ C
(
ν(1− λ)

δ2
sN

)
, (48)

where C > 0 is a constant independent of sN , ν and δ, and λ =
λ2(A) < 1 is the second largest eigenvalue of the combination ma-
trix A, it then holds that(

E‖X̄ t+1
0 ‖2 + E‖X̌ t+1

0 ‖2
)

+
γ

2

(
At+1 + Bt + Ct)

≤ρ
{(

E‖X̄ t0‖2 + E‖X̌ t0‖2
)

+
γ

2
(At + Bt−1 + Ct−1)

}
(49)

where γ > 0 is a constant, and

ρ =
1− ĎN

8
aµν

1− 8bµ3δ4
sN3/ν

< 1. (50)

The positive constants a and b are independent of sN , ν and δ.

Proof. See Appendix K in [13]. �
From Theorem 1 and the fact that At,Bt and Ct are all positive
constants, we get
E‖W̃t+1

0 ‖2 ≤ E
(
‖W̃t+1

0 ‖2 + ‖Ỹt+1
0 ‖2

)
(45)
≤ ‖X‖2

(
E‖X̄ t+1

0 ‖2+E‖X̌ t+1
0 ‖2

) (49)
≤ ρt‖X‖2C0 (51)

Algorithm 3 (Diffusion-AVRG at node k for unbalanced data)

Initialize wk,0 arbitrarily; let qk = Nk/N , ψk,0 = wk,0, g0
k = 0,

and∇Q(θ0
k,0;xk,n)← 0, 1 ≤ n ≤ Nk

Repeat i = 0, 1, 2, · · ·
hcalculate t and s such that i = tNk+s, where t ∈ Z+ and s =
jmod(i,Nk);
hIf s = 0:
hhgenerate a random permutation σtk; let gt+1

k =0, θtk,0 = wk,i;
hEnd
hgenerate the local stochastic gradient:

nts = σtk(s+ 1), (52)

∇̂Jk(wk,i) = ∇Q(wk,i;xk,nt
s
)−∇Q(θtk,0;xk,nt

s
) + gtk, (53)

gt+1
k ← gt+1

k +
1

Nk
∇Q(wk,i;xk,nt

s
), (54)

updatewk,i+1 with exact diffusion:

ψk,i+1 = wk,i − µqk∇̂Jk(wk,i), (55)

φk,i+1 = ψk,i+1 +wk,i −ψk,i, (56)

wk,i+1 =
∑
`∈Nk

a`kφ`,i+1. (57)

End

where C0 =
(
E‖X̄0

0‖2+E‖X̌0
0‖2
)

+ γ
2

(A1 +B0 +C0). The above
inequality implies that E‖wt

k,0 − w?‖ → 0 for any agent k.

3. DIFFUSION–AVRG ALGORITHM UNDER
UNBALANCED DATA DISTRIBUTIONS

When the size of the data collected at the nodes may vary, some chal-
lenges arise. For example, assume we select N̂ = maxk{Nk} as the
epoch size for all nodes. When node k with a smaller Nk finishes
its epoch, it will stop and wait for the other nodes to finish their
epochs. Such an implementation is inefficient because nodes will
be idle while they could be assisting in improving the convergence
performance. We instead assume that nodes will continue updating
without any idle time. If a particular node k finishes running over all
its data samples during an epoch, it will then continue into its next
epoch right away. In this way, there is no need to introduce a uni-
form epoch. We list the method in Algorithm 3; this listing includes
the case of balanced data as a special case.

In Algorithm 3, to generate the local gradient ∇̂Jk(wk,i), node
k will transform the global iteration index i to its own local epoch
index t and local inner iteration s. With t and s determined, node k
is able to generate ∇̂Jk(wk,i) with the AVRG recursions (52)–(54).
It is worth noting that the local update (52)–(56) for each node k at
each iteration requires the same amount of computations no matter
how different the sample sizes {Nk} are. This balanced computa-
tion feature guarantees the efficiency of Diffusion-AVRG. Figure 1
illustrates the operation of Algorithm 4 for a two-node network with
N1 = 2 and N2 = 3. Observe that the local computations has sim-
ilar widths because each node has a balanced computation cost per
iteration. Note that Wi = [w1,i;w2,i] in Figure 1.

3.1. Comparison with Decentralized SVRG
SVRG has two-loop structures, which is not suitable for decentral-
ized setting, especially when data can be distributed unevenly. To
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Fig. 1: Illustration of the operation of Diffusion-AVRG.

illustrate this fact assume, for the sake of argument, that we com-
bine exact diffusion with SVRG to obtain a Diffusion-SVRG variant,
which we list in Algorithm 5 in [13]. Similar to Diffusion-AVRG,
each node k will transform the global iteration index i into a local
epoch index t and a local inner iteration s, which are then used to
generate ∇̂J(wk,i) through SVRG. At the very beginning of each
local epoch t, a true local gradient has to be calculated in advance;
this step causes a pause before the update of φk,i+1. Now since the
neighbors of node k will be waiting for φk,i+1 in order to update
their own w`,i+1, the pause by node k will cause all its neighbors
to wait. These waits reduce the efficiency of this decentralized im-
plementation, which explains why the Diffusion-AVRG algorithm
is preferred. Figure 2 in the extended version [13] illustrates the
Diffusion-SVRG strategy with N1 = 2 and N2 = 3, from which
we can observe that the balanced calculation resulting from AVRG
effectively reduces idle times and enhances the efficiency of the de-
centralized implementation.

4. SIMULATIONS
In this section, we illustrate the convergence performance of
Diffusion-AVRG. We consider problem (5) in which Jk(w) takes
the form of regularized logistic regression loss function:

Jk(w)
∆
=

1

Nk

Nk∑
n=1

(ρ
2
‖w‖2+ln

(
1+exp(−γk(n)hT

k,nw)
))

The vector hk,n is the n-th feature vector kept by node k and
γk(n) ∈ {±1} is the corresponding label. In all experiments, the
factor ρ is set to 1/N , and the solution w? to (5) is computed by
using the Scikit-Learn Package. All experiments are run over four
datasets: covtype.binary, rcv1.binary, and MNIST. The last dataset
has been transformed into binary classification problems by consid-
ering data with labels 2 and 4. We generate a network with K = 20
nodes, the topology of which is shown in Figure 3 in [13].

In our experiments, we test the convergence performance of
Diffusion-AVRG with both even and uneven data distribution. We
compare Diffusion-AVRG with DSA [8]. The experimental results
for even data are shown in the top 3 plots of Figure 2, and the results
for uneven data are shown in bottom 3 plots. To enable fair compar-
isons, we tune the step-size parameter of each algorithm for fastest
convergence in each case. The plots are based on measuring the
averaged relative square-error, 1

K

∑K
k=1 ‖w

t
k,0 − w?‖2/‖w?‖2.

It is observed that both algorithms converge linearly to w?, while
Diffusion-AVRG converges faster (especially on Covtype).
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