2018 26th European Signal Processing Conference (EUSIPCO)

A new asymmetric link-based binary regression
model to detect Parkinson’s disease by using
replicated voice recordings

1% Lizbeth Naranjo
Facultad de Ciencias
Universidad Nacional Autonoma de México
México DF, Mexico
lizbethna@ciencias.unam.mx

4 Fernando Calle-Alonso

Departamento de Matemadticas
Universidad de Extremadura
Céceres, Spain
fcalonso@unex.es

Abstract—Addressing dependent data as independent has be-
come usual for Parkinson’s Disease (PD) detection by using
features extracted from replicated voice recordings. A binary re-
gression model with an Asymmetric Student ¢ (AST) distribution
as link function has been developed in a classification context by
taking into account the within-subject dependence. This opens
the possibility of handling situations in which the probabilities
of the binary response approach 0 and 1 at different rates. The
computational issue has been addressed by proposing and using a
representation based on a mixture of normal distributions for the
AST distribution. This allows to include latent variables to derive
a Gibbs sampling algorithm that is used to generate samples
from the posterior distribution. The applicability of the proposed
approach has been tested with a simulation-based experiment and
has been applied to a real dataset for PD detection.

Index Terms—Asymmetric Student ¢, Bayesian binary regres-
sion, Gibbs sampling, Parkinson’s disease, Voice features.

I. INTRODUCTION

Parkinson’s Disease (PD) is the second most common
neurodegenerative disorder and the most common movement
disorder. This disease leads to the progressive deterioration of
the motor function due to the loss of dopamine. Currently,
there is no cure, but there are successful treatments to reduce
the symptoms. Addressing early diagnoses of people with PD
is a key issue to improve the patients’ quality of life.

Vocal impairment has been presented as one of the most
likely and earliest signs of the disease [1]. The muscles are
affected, and, as a consequence, the voice production does not
perform well. This can be measured in an objective way by
extracting features from voice recordings and analyzing them

properly.
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Addressing dependent data as independent has become
usual for PD detection by using voice features, see, for
instance, [2]-[5] and references therein. [2] presented one
of the most used PD datasets consisting on 22 features
extracted from 195 recordings of sustained /a/ phonations.
These phonations belonged to only 32 people (24 with PD),
having each one six or seven replicated voice recordings. This
dataset! has been extensively used with classifiers based on
independence assumptions. Obviating the dependent nature of
the data artificially increases the sample size and leads to a
diffuse criterion to decide when a subject should be classified
as suffering from PD or healthy, since it usually happens that
some voice recordings of the same subject are classified as
healthy and some others as disordered.

Since the features were extracted from multiple voice
recordings from the same subjects in a concrete time, in
principle, the features should be identical for each subject.
However, imperfections in technology and the own biological
variability result in non-identical replicated features that are
more similar to one another than to features from different
subjects. Therefore, the underlying within-subject dependence
must be properly modelled. For the first time, [6] demonstrates
a classification approach for PD detection that takes into
account the underlying within-subject dependence by using the
dataset provided in [2]. This Bayesian approach was based on
a binary logistic regression model. However, a Markov Chain
Monte Carlo (MCMC) was not directly implemented. Instead
the posterior distribution was generated by using WinBUGS
[7]1. WinBUGS is a software used to implement MCMC
simulations, but it is not possible to know how the generation
process is being performed. Later, a Bayesian binary regres-
sion approach based on probit model was proposed [8], which

Uhttp://archive.ics.uci.edu/ml/datasets/Parkinsons
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introduces latent variables to provide an augmented framework
available for efficient simulation by using Gibbs sampling.

When modelling binary response data through regression
models, several link functions have been defined. The most
popular models are the logistic and normal ones. However, in
many applications the overall fit can be significantly improved
by using asymmetric or skewed links. [9] considered that the
rates at which the probabilities of a given binary response
approach 0 or 1 are different. Under this notion, a link is sym-
metric if the rates are similar, otherwise the link is asymmetric.
An asymmetric link can be characterized as positively skewed
if the rate approaching 1 is faster than the rate approaching 0,
otherwise it is negatively skewed.

Besides the link asymmetry, tail modelling is important to
produce values farther from the mean, which is an advantage
for robustness. Although the logistic distribution has slightly
heavier tails than the normal one, symmetry is also present and
they are not flexible enough compared to other distributions
for which the tails can be modelled even separately. The
Asymmetric Student ¢ (AST) distribution can handle heavy
tails and asymmetry simultaneously. There are several param-
eterizations for this distribution, but the one based on [10] is
especially interesting because it can be efficiently integrated
in a binary regression model considering replications through
a mixture of normal distributions representation.

An AST link-based binary regression addressing replica-
tions in a classification context is proposed. The representation
of the AST distribution as a mixture of normal distributions
and the introduction of latent variables allows to derive a Gibbs
sampling algorithm and, therefore, to calculate predictive prob-
abilities to assign the class. A simulation-based experiment
shows the potential of the approach by comparing with the
other two binary regression approaches addressing replications
that have been developed in the scientific literature. The results
show the superior performance of the proposed approach and
open the possibility of using more flexible links. The approach
has also been applied to the PD dataset provided in [2].

The rest of the paper is as organized as follows. Section II
describes the probability density function (pdf) of the AST
distribution in the chosen parameterization and presents a
proposition to represent the AST distribution as a mixture of
normal distributions. In Section III, the AST link-based binary
regression model is described from a Bayesian viewpoint,
and the Gibbs sampling algorithm is derived. Section IV
presents a simulation-based experiment to show the model
performance when asymmetry is present and compares the
proposed approach with symmetric link-based regression mod-
els such as probit and logit. Section V applies the approach to
a real dataset. A brief conclusion is presented in Section VI.
Finally, the proof of the proposition and the full conditional
distributions are presented in two appendices.

II. AST DISTRIBUTION

The AST distribution proposed in [10] is defined by a
location parameter p € R, a scale parameter ¢ > 0, a
skewness parameter « € (0,1), and two shape parameters
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vi > 0 and v» > 0 for tail modelling. It is denoted as
Z ~ AST(p, 0,0, v1,19) and its pdf is:

21—
2
1 z— .
o |:1 + 71 (20’&[{‘(’11/1)) :| if z < My
fAST(Z) = ) _u22+1
i{“wz(za(ﬁlf}qm)] if 2> p,
where K (v) = Dt 1)/2) ang I'(+) is the gamma function.

. Lw/2) Iy T . o
The density is unimodal with mode given by p, which is

also the a-quantile, since « = P[Z < pu]. When o = 1/2
and v, = vy, the density is symmetric. This parameterization
allows to model each tail separately and identify the effect of
the skewness and shape parameters.

We have derived a proposition to represent the AST dis-
tribution by means of a mixture of normal distributions. The
proof is presented in Appendix A.

Proposition 1. Let Z be a random variable with pdf repre-
sented as

f(z)=a / ) Fon)dn + (1 — a) / F(22) F ),

where

Zlm  ~ Normal (u, 20aK (v1))?y ') I[Z < pl,
v~ Gamma(r1/2, rate =2/1v4),

Zlyo  ~ Normal (p, [20(1 — @)K (12)]*v5 ") I[Z > pl,
v2 ~ Gamma(re/2, rate = 2/vs),

with o« € (0,1) and I[-] denotes the indicator function, then
Z ~ AST(u, 0,0, v1,v9).

III. THE APPROACH
A. Hierarchical binary model with replications

Suppose that n independent binary random variables
Yy,...,Y, are observed, where Y; is Bernoulli distributed
with success probability P(Y; = 1) = p;, ¢ = 1,...,n
The probabilities p; are related to a set of covariates x;,
where ©; = (@;1,...,2;x) is a K x J matrix of a set of
K covariates which have been measured with J replications.
Suppose that @;; = (%15,...,%:k;) is the j-th replication
of the unknown covariates vector w; = (w;1, ..., w;x)" and
assume that they have a linear relationship, i.e., they follow an
additive measurement error model structure [11]. This leads to
the following hierarchical model:

Y; ~ Bernoulli(p;),
T = w;+ &,
gikj ~ Normal(0, U/%)y

where [y is the intercept parameter, 3 is a K-dimensional
vector of unknown parameters, W(-) is a known nonnegative
and nondecreasing function ranging between 0 and 1, and o3
is the variance related to the replicates of the k—th covariate.
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In the Bayesian methodology, the initial information about
the parameters is elicited through a prior distribution, which
is combined with the likelihood to provide a posterior dis-
tribution that contains all the information about the model.
Then, in order to complete the hierarchical model, the prior
distributions must be defined. For the regression parameters
B, normal distributions are usually assumed, inverse Gamma
distributions can be chosen for the variance parameters o3 as
conjugate, and, finally, the latent variables w;; can also be
considered as normal distributions, that is:

Bo ~ Normal(bg, By),
Br ~ Normal(bg, By),
of ~ InverseGamma(sy, %),
w; ~ Normalg(u,Q),

with k =1,..., K.

B. Binary regression model with AST-link

We assumed an AST-based link model, p; = ¥(8y +
w}B), where U(-) depends on the cdf of the distribution
AST(0,1, at, v1, 19).

Based on the idea of introducing latent variables of [12],
independent variables Z1, ..., Z, are introduced in the model,
where Z; given w;, By, B, «, v1 and vy is distributed as
AST(By + wiB,1,a,v1,15), and it is defined V; = 1 if
Z; > 0 and Y; = 0 if Z; < 0. Besides, by introducing the
latent variables ;1 and 7,2, the AST distribution of Z; can be
represented as a mixture of normal distributions by Proposition
1.

In addition, prior distributions for the parameters related to
the AST distribution must be defined, i.e:

a ~ Beta(ag,az),
v1 ~ Gammaf(ey,d;),
vy ~ Gamma(es,ds).

C. Exploring the posterior distribution

The likelihood function of the model proposed in the
previous subsections considering the observed and the latent
variables is given by
E(Z,w,’)’l,’YQ,BOUB,0'2,047V17U2 | yuw)

n

= H {fY(yqiZi)fZ(Zi|'Y7117'Yi2awiaﬁ07ﬁ7 CRZNZY

i=1

b
X [y (var 1) frs (2l v2) [H Ix (xij|w;, 02)1 fW(wi)}

j=1
The joint posterior distribution of the latent variables z,
w, v, and 7,, and the parameters Sy, 3, o2, «, vy and
V5 is obtained by using the likelihood function and the prior
distributions, and it is given by
7r(z,w,71,727ﬂ0,,3,0'2,a71/1,V2 | yaw)
X ‘C(sza715727/80a/650-27057V13V2 |yam)
x w(Bo)m(B)m(a) - m(oi)m(a)m(vi)m(ve).
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The posterior distribution previously presented is analyti-
cally intractable, so an MCMC algorithm must be applied
to generate from the posterior distribution. The idea of in-
troducing latent variables and the mixture representation of
AST of Proposition 1, make possible the development of
an efficient Gibbs sampling algorithm with easy-to-generate
full conditional distributions, that are necessary to implement
the iterative process. The full conditional distributions are
presented in Appendix B.

IV. SIMULATION-BASED EXPERIMENT

A simulation-based experiment has been conducted to vali-
date the proposed approach. The generated datasets are based
on the motivating problem on PD detection. Specifically,
the covariates x;; have not been simulated, and we have
used the four most relevant acoustic features according to
[2], i.e., Harmonic-to-Noise Ratio (HNR), Recurrence Period
Detrended Entropy (RPDE), Detrended Fluctuation Analysis
(DFA), and Pitch Period Entropy (PPE). The covariates w;,
that are used to simulate, are computed by averaging their
J = 6 or J = 7 replications. The following values were
considered for the regression parameters: Jy = 3.3 and
B =(0.02,—1.2,0.7,4.6). The data structure keeps the same,
but the responses y; (0 for healthy subjects and 1 for those with
PD) have been simulated according to an AST distribution
with a very different rate at which probabilities approach 0 or
1. Specifically, an AST(0,1,0.75,0.5, 5) distribution has been
considered to calculate the probabilities p;, following the next
process: generate u; ~ U(0,1), if p; > wu;, then y; = 1,
else y; = 0. A total of 100 datasets for each link have been
generated for posterior average purpose.

The hyperparameters used for the latent variables and prior
distributions of the probit, logit and AST links were given
by By ~ Normal(0,100), 8x ~ Normal(0,100), 1/07 ~
Gamma(0.01,0.01) and w;; ~ Normal(0, 100). Besides, the
prior distributions for the skewness and shape parameters of
the AST link are given by a ~ Beta(1,1), v; ~ Gamma(1,1)
and vy ~ Gamma(l, 1).

The posterior estimates have been obtained by using the
Gibbs sampling algorithm described in Appendix A. A total
of 200,000 iterations with a burn-in of 50,000 and a thinning
period of 30 generated values have been considered for each
chain. With these specifications, all the chains generated
appear to have converged. The convergence analysis has been
performed by using BOA package [13].

For each generated dataset, a cross-validation has been used
to assess the generalization performance of the model with
probit, logit and AST links. Specifically, a stratified sampling
to choose 75% for the training subset and 25% for the testing
subset has been considered. Note that the classifier learns from
18 PD and 6 healthy individuals (training subset), and the
parameters are applied to predict the outcome of 6 PD and
2 healthy subjects (testing subset). The model parameters are
determined using the training subset, and errors are computed
using the testing subset. The following notation is consid-
ered for each iteration in the cross-validation scheme: TP
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(True Positive), TN (True Negative), FP (False Positive), FN
(False Negative), accuracy rate=(T'N + T P)/n, sensitivity =
TP/(TP+FN), specificity =T'N/(T' N + F P), and precision
=TP/(TP + FP). This process is performed 100 times and
the results are then averaged.

After the cross-validation has been performed for each
dataset, the accuracy metrics from the 100 datasets have been
averaged and presented in Table I. One-way ANOVA reported
statistically significant differences among the accuracy means
of the three methods (p-value=0.006), providing AST link-
based approach the best result with an accuracy mean of
81.75%. This means around 3% and 7% more than the ones
obtained with probit and logit models, respectively.

TABLE I
ACCURACY RATES AND OTHER INDICATORS FOR THE MODELS BASED ON
THE 100 SIMULATED DATASETS.

Logit Mean SD

Accuracy 0.7437  0.1698
Sensitivity ~ 0.7800  0.2022
Specificity  0.6350  0.3817
Precision 0.8784  0.1262
Probit Mean SD

Accuracy 0.7875  0.1623
Sensitivity ~ 0.8300  0.1909
Specificity  0.6600  0.3752
Precision 0.8931  0.1156
AST Mean SD

Accuracy 0.8175  0.1563
Sensitivity ~ 0.8783  0.1722
Specificity  0.6350  0.3883
Precision 0.8885 0.1179

Figure 1 shows some graphics for the same randomly
chosen dataset fitted by logit, probit and AST models. The
symbol x denotes values for the responses y; and the symbol
e denotes the estimated probabilities p; with the three models,
and the lines are the simulated probabilities p;. The flexibility
to model the tails makes that AST link-based model provides
the best results.
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Fig. 1. Responses, estimated and simulated probabilities for one randomly
chosen dataset with logit, probit and AST models.

V. APPLICATION

In this section, the observed responses from the PD dataset
are used as well as the four most relevant acoustic features
according to [2]. The health status is imbalanced since there
are 8 healthy subjects and 24 people suffering from PD. This
supports the idea that the success rate could be approaching
0 and 1 in a different way. The same prior distributions,
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MCMC specifications and cross-validation framework used in
the previous section have been considered here. The results
are presented in Table II.

TABLE II
ACCURACY RATES AND OTHER INDICATORS FOR THE MODELS BASED ON
THE PD DATASET.

Logit Mean SD

Accuracy 0.8525  0.1142
Sensitivity 09433 0.1258
Specificity  0.5800  0.3312
Precision 0.8805  0.0919
Probit Mean SD

Accuracy 0.8550 0.1119
Sensitivity  0.9416  0.1261
Specificity  0.5950  0.3232
Precision 0.8844  0.0883
AST Mean SD

Accuracy 0.8687  0.1056
Sensitivity ~ 0.9516  0.1093
Specificity  0.6200  0.3265
Precision 0.8923  0.0899

The best accuracy rate has been obtained with the AST link-
based approach, being 86.87%, more than 1% over the accura-
cies of logit and probit approaches. Although the differences
are not statistically significant (p-value of one-way ANOVA
is 0.536), a relevant fact is that this model also improves
the sensitivity, specificity and precision. Also the standard
deviations are smaller or of the same magnitude order.

These data do not have a large improvement margin when
the appropriate statistical treatment is applied to the replica-
tions, since the sample size is very small and the number of
healthy subjects is only 8. This greatly affects the specificity,
since, for each iteration of the cross-validation, the learning
is performed with only 6 healthy people and the training set
is composed of only 2 subjects. The best specificity is 62%
with the AST link-based approach, whereas the sensitivity is
95.16%. In this context, it is very important to have a high
sensitivity to allow the subject to access to an early treatment.

VI. CONCLUSION

Addressing dependent data as independent has become
usual for PD detection by using features extracted from
replicated voice recordings. The existing within-subject de-
pendence must be properly modelled. For this task, an AST
link-based binary regression model addressing replications is
proposed. The inclusion of two types of latent variables has
allowed to derive a Gibbs sampling algorithm to generate
from the posterior distribution. The good performance of the
proposed approach has been shown with a simulation and a
real data application. To the best of the authors’ knowledge,
the proposed approach is the first one addressing replications
at the same time that considers an asymmetric link function in
a binary regression context. This approach covers a gap in the
scientific literature for situations in which the probabilities of
a given binary response approach O and 1 at different rates.

Although the problem of PD detection based on features
extracted from voice recordings has motivated this work, the
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approach can be applied to other classification contexts where
it is necessary to account for the dependent nature of the data
in a replicated measure-based design.
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APPENDIX
APPENDIX A. PROOF OF PROPOSITION 1

It is enough to observe that

/ F(eh) f(n)dm

1 1 Z— W 2 :
= — |14+ = — Iz <
oo + v (2004K(u1)> [z <l
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and therefore
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is the pdf of the AST(u, 0, av, vy, V).

APPENDIX B. FULL CONDITIONAL DISTRIBUTIONS

In order to simplify the notation, define 7, = 5y + w03,
Vi = RaK ()P, Va = 201 — ) K ()],

N (i, Vivir') Iz > Ol [z < m] if y; = 1
' N (n;, Vﬂfll) I[z; <0z <m ify; =0
N (mi, Vo) Iz < O[[z; > 3] if y; = 0

["Yi1|"'] ~ Gamma(VlT*l’M_klg
)2
[yio| -]~ Gamma(%ﬂ,%_kﬂ

Note that if z; < Sy + w;3 then v;; > 0 and 7,2 = 0, but if
z; > Bo + w}B then v;; = 0 and ;2 > 0.
wi-] ~

oF] ]~

Normal g (g, 27)
Normal (b, Bf)

InverseGamma (s}, 77)
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The full conditional distributions of 3, «, 11 and vy are
not standard, but they can be easily sampled by using an
acceptance-rejection method or the Metropolis-Hastings algo-
rithm.

The final algorithm consists of choosing initial values z(%),
w®, ,),50)’ ,750), ﬁ(()o), B8O, U%(O)P”’U%{(O), MO} Vio)
I/éo), and iteratively sampling PORTION ’ygl), ’yg), 6(()1), ,B(l),
Uf(l), ... ,U%((l), a®, I/y) and l/gl)
distributions.

and

from their full conditional

REFERENCES

[1] J. R. Duffy, Motor Speech Disorders: Substrates, Differential Diagnosis,
and Management, Elsevier, 2005.

[2] M. A. Little, P. E. McSharry, E. J. Hunter, J. Spielman, and L. O.
Ramig, “Suitability of dysphonia measurements for telemonitoring of
Parkinson’s disease,” IEEE Transactions on Biomedical Engineering,
vol. 56, no. 4, pp. 1015-1022, 2009.

[3] A. Tsanas, M. A. Little, P. E. McSharry, J. Spielman, and L. O.
Ramig, “Novel speech signal processing algorithms for high-accuracy
classification of Parkinson’s disease,” IEEE Transactions on Biomedical
Engineering, vol. 59, no. 5, pp. 1264-1271, 2012.

[4] J. R. Orozco-Arroyave, J. D. Arias-Londofo, J. F. Vargas-Bonilla,
and E. Noth, “Analysis of speech from people with Parkinson’s
disease through nonlinear dynamics,” in Advances in Nonlinear Speech
Processing, T. Drugman and T. Dutoit, Eds., vol. LNAI 7911 of Lecture
Notes in Artificial Intelligence, pp. 112-119. Springer-Verlag, 2013.

[5] M. Hariharan, K. Polat, and R. Sindhu, “A new hybrid intelligent system
for accurate detection of Parkinson’s disease,” Computer Methods and
Programs in Biomedicine, vol. 113, no. 3, pp. 904-913, 2014.

[6] C. J. Pérez, L. Naranjo, J. Martin, and Y. Campos-Roca, “A latent
variable-based Bayesian regression to address recording replication in
Parkinson’s disease,” in Proceedings of the 22nd European Signal Pro-
cessing Conference (EUSIPCO-2014), EURASIP, Ed., Lisbon, Portugal,
2014, pp. 1447-1451, IEEE.

[7]1 1. Ntzoufras, Bayesian Modeling Using WinBUGS, Wiley Series in
Computational Statistics. Wiley, New Jersey, 2011.

[8] L. Naranjo, C. J. Pérez, Y. Campos-Roca, and J. Martin, “Addressing
voice recording replications for Parkinson’s disease detection,” Expert
Systems With Applications, vol. 46, pp. 286-292, 2016.

[9] M.-H. Chen, D. K. Dey, and Q.-M. Shao, “A new skewed link model for

dichotomous quantal response data,” Journal of the American Statistical

Association, vol. 94, no. 448, pp. 1172-1186, 1999.

D. Zhu and J. W. Galbraith, “A generalized asymmetric Student-¢

distribution with application to financial econometrics,” Journal of

Econometrics, vol. 157, no. 2, pp. 297-305, 2010.

J. P. Buonaccorsi, Measurement Error: Models, Methods and Applica-

tions, Chapman and Hall/CRC, Boca Raton, Florida, 2010.

J. Albert and S. Chib, “Bayesian analysis of binary and polychotomous

response data,” Journal of the American Statistical Association, vol. 88,

no. 422, pp. 669-679, 1993.

B. J. Smith, “BOA: an R package for MCMC output convergence

assessment and posterior inference,” Journal of Statistical Software,

vol. 21, no. 11, pp. 1-37, 2007.

[10]

[11]

[12]

[13]

1196



