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Abstract—Scale-free dynamics, quantified as power law spectra
from magnetoencepholagraphic (MEG) recordings of Human
brain activity, may play an important role in cognition and
behavior. To date, their characterization remain limited to uni-
variate analysis. Independently, functional connectivity analysis
usually entails uncovering interactions between remote brain
regions. In MEG, specific indices (e.g., Imaginary coherence
ICOH and weighted Phase Lag Index wPLI) were developed
to quantify phase synchronization between time series reflecting
activities of distant brain regions and applied to oscillatory
regimes (e.g., α-band in (8, 12) Hz). No such indices has yet
been developed for scale-free brain dynamics. Here, we propose
to design new indices (w-ICOH and w-wPLI) based on complex
wavelet analysis, dedicated to assess functional connectivity in the
scale-free regime. Using synthetic multivariate scale-free data, we
illustrate the potential and efficiency of these new indices to assess
phase coupling in the scale-free dynamics range. From MEG
data (36 individuals), we demonstrate that w-wPLI constitutes
a highly sensitive index to capture significant and meaningful
group-level changes of phase couplings in the scale-free (0.1,
1.5) Hz regime between rest and task conditions.

I. INTRODUCTION

Context: Scale-free brain dynamics. The Human brain is a

complex biological system characterized by hierarchical rhyth-

mic activity, which may play an important role in perception

and cognition. In the last century, brain activity recorded with

electro-, and then, magneto-encephalography (EEG/MEG) has

been understood as originating from the synchronous activa-

tion of neuronal populations that generate rhythmic activity in

predetermined frequency bands. The α-oscillations (8-12 Hz)

are spontaneous and most salient during rest, neuroscientists

also described additional oscillatory regimes, for instance the

β (13-30 Hz) and γ (31-100 Hz) bands readily modulated

during task (e.g., decision making, multisensory integration).

Recently, broadband scale-free brain activity reflecting ar-

rhythmic or irregular dynamics (i.e., without characteristic

frequency) has been of increasing interest. Scale-free brain

activity is characterized by 1/f power law spectra at low

frequencies (< 2 Hz), and hypothesized to play a role in brain

functions [1]. It is now well established that the accurate mod-

eling and assessment of scale-free dynamics requires replacing

spectral estimation with wavelet analysis using self-similarity

as a model [2]. The modulation of scale-free dynamics, as

quantified by the self-similarity exponent H , was observed

when contrasting rest and task-related brain activity, including

in different ”unconscious” sleep stages [1], [3]–[6].

Related work: functional connectivity assessment. So

far, scale-free activity has been characterized in a univaria-

te manner, both in sensor and source space (e.g. [1], [4],

[5]). However, remote brain regions are known to interact

within large scale functional networks [7] which mediate the

information flow inside the brain integrating the activity of

functionally segregated modules. These interactions in the

brain are referred to as functional connectivity (FC) and

usually captured by evaluating a similarity index within mul-

tivariate neuroimaging data. Classically, such measures are

based on cross-correlations or cross-spectra for the oscillatory

bands, while the use of the wavelet coherence function was

proposed for scale-free dynamics, relying on a concept of

fractal connectivity (see, e.g., [8], [9] and references therein).

However, redundancies in measurements collected by close-

by electrodes limit the effectiveness of these indices for FC

assessment in M/EEG because they are highly sensitive to

common source effects inducing spurious instantaneous (i.e.,

delay-free) coupling. For oscillatory regimes, alternative phase

synchronization measures, robust to such spurious functional

coupling, were proposed and are commonly used in M/EEG to

assess FC in given frequency bands, see, e.g., [10], [11]. These

indices typically rely on the insensitivity of the imaginary

part of the complex normalized cross-spectrum (coherency) to

instantaneous coupling (see Section II-A). Yet, for the scale-

free dynamics, phase coupling indices for FC assessment in

M/EEG are currently lacking.

Goals and contributions. The present work aims to over-

come this fundamental limitation and to propose tools for the

assessment of FC from scale-free brain dynamics, that are

robust to spurious functional coupling and benefit from the the-

oretical grounding and estimation performance of multiscale

analysis for scale-free data. To that end, in Section II-A, we

briefly recall the tools classically used in MEG data analysis

for brain connectivity assessment in oscillatory bands. The key

intuitions underlying these tools constitute also the leading

idea for the proposed approach and are translated to scale-

free dynamics analysis. To do so, we rely on another key

ingredient, the complex wavelet transform. The methodology

and corresponding scale-free FC indices are defined in Sec-
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tion II-B and constitute, to the best of our knowledge, the

first operational tool for the relevant assessment of FC in the

scale-free regime for MEG data. MATLAB codes, implemented

by ourselves, will be made available at the time of publica-

tion. The proposed approach is illustrated on synthetic scale-

free signals and extensively tested on rest and task-related

MEG data described in Section III and [12]. Achieved results

(Section IV) demonstrate that the proposed tool captures well

significant variations of long range phase synchronization in

scale-free dynamics between rest and task-related MEG data.

II. FUNCTIONAL CONNECTIVITY ASSESSMENT FOR MEG

A. Oscillatory-based FC analysis in the frequency domain

M/EEG measurements are generally based on non-invasive

recordings of simultaneous time-series reflecting whole brain

activity. The assessment of statistical relationships within such

multivariate data allows for the identification of functional

brain networks that are activated in a particular mental state,

task execution or health condition. Most FC analyses in

M/EEG have exploited complex-valued measures defined in

the frequency domain (e.g. the cross-spectrum Smm′(f) of sig-

nals Ym and Ym′ , or the spectral coherency) given the known

oscillatory components of brain dynamics [13], [14]. Yet, the

real component of these measures have shown to be strongly

affected by volume conduction inducing spurious statistical

dependence between recorded time-series [15]. Specifically,

the linearity of the Maxwell equations and the quasi-static

approximation of the forward model below 100 Hz, allow to

assume the linear mixing of sources modeling the volume con-

duction effect on MEG sensors Ym(f), and the instantaneous

mapping of sources to sensors. The latter assumption implies

that the conducted electro-magnetic activity of a single source

spatially affects separate sensors with negligible time delay.

It follows that the superposition of K independent sources

Ym(f) =
∑K

k=1 amksk(f), recorded at sensors Ym(f), with

coefficients amk ∈ �, yields a real-valued cross-spectrum,

Smm′(f) =
∑

k

amkam′k |sk(f)|
2

(1)

and so for the coherency, too. It’s worth notice that further

non-zero imaginary components of Smm′ would originate in

the presence of dependent sources. In sensor space volume

conduction thus strongly affects the real part of the coherency

but does not create a non-vanishing imaginary part. The so-

lution of the linear inverse MEG problem should theoretically

account for this volume conduction effect to estimate source-

reconstructed time series. However, practical solutions to this

ill-posed problem entail residual spurious FC in the source

space.

Robust phase syncronization measures. Following the

above intuition, several robust FC measures, exploiting the

imaginary part of the coherency function have been proposed.

Of note, the imaginary part of the coherency function over

frequency bands, the so-called imaginary coherence (ICOH),

has been proposed as a FC index [15] that carries information

about phase delay (i.e., phase synchronization) in oscillatory

regimes between remote brain regions. However, due to the

normalization of the coherence that involves the real part of the

spectrum, non-interacting sources cause a decrease in ICOH.

Consequently, although volume conduction cannot explain

non-zero ICOH, it can still impact its value [10]. Moreover,

the magnitude of ICOH depends on both the amplitude of the

signals and the magnitude of the phase delay.

Further phase synchronization measures are based on the

notion of instantaneous phase Φm(t) of a signal. Given a band-

pass filtered MEG time series Ym(t), its Hilbert transform

Ỹm(t) can be used to estimate Φm(t) � arctan Ỹm(t)
Ym(t) . As a

robust indicator for phase syncronization between two signals

m,m′, the phase lag index (PLI) has been defined as

PLImm′(k) � |E{sign(Φm(tk)− Φm′(tk))}| , (2)

where tk = k/fs is a sampled time point and fs the sampling

frequency. Thus, PLI quantifies to which extent the phase of

one signal leads (or lags) over the other [10]. By construction,

PLI ∈ (0, 1), with large PLI indicating strong synchronization.

PLI is not sensitive to phase synchronization with zero phase

lag, the magnitude of phase delays or that of signals. Yet, the

discontinuity at zero of the phase difference entering in (2)

causes issues in the presence of noise. To overcome this issue,

the weighted PLI (wPLI) [11] has been introduced,

wPLImm′(f) �
|E{|Imm′(f)| × sign(Imm′(f))}|

E{|Imm′(f)|}
, (3)

where Imm′(f) = ℑ{Smm′(f)} and ℑ stands for the imagi-

nary part. wPLI uses the imaginary part of the cross-spectrum

as a weight to reduce the contribution of small phase differ-

ences, which are easily perturbed by noise. It can be shown

that wPLI has increased sensitivity to detecting (changes in)

phase synchronization compared to PLI and ICOH [11].

B. Scale-free FC analysis in the complex wavelet domain

Inspired by above oscillatory regime FC indices, we now

define multiscale FC indices for scale-free dynamics.

Complex wavelet transform. Let ψ denote a mother

wavelet, i.e., an oscillating and sufficiently smooth reference

pattern that is chosen such that the collection of dilated and

translated templates {ψj,k(t) = 2−j/2ψ(2−jt− k)}(j,k)∈Z2 of

ψ form an orthonormal basis of L2(R) [16]. The discrete

wavelet transform (DWT) coefficients dY (j, k) of a signal

Y are defined as dY (j, k) � 〈ψj,k|Y 〉 with 〈ψj,k|Y 〉 =
∫

Y (t)2−jψj,k(t)dt and are a mainstay in scale-free analysis,

see, e.g., [2] and references therein.

As an alternative to the DWT, the complex wavelet trans-

form (CoWT) can be defined. The key motivation for the use

of CoWT in this work is that they allow to assess the phase of

wavelet spectra. The design of an invertible, analytic wavelet

transform is not straightforward, and in this contribution, we

build on the solution proposed in [17], [18] named dual-

tree complex wavelet transform (DT-CoWT). It consists of

computing two DWTs using different wavelets ψ(r) and ψ(ı)

that are designed such that ψ(r) + ıψ(ı) is approximately ana-

lytic, i.e., ψ(r)(t) ≈ Hilbert{ψı(t)}. The complex DT- CoWT

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1412



coefficients are defined as dY (j, k) � d
(r)
Y (j, k) + ıd

(ı)
Y (j, k),

with d
(r)
Y (j, k) � 〈ψ

(r)
j,k |Y 〉 and d

(ı)
Y (j, k) � 〈ψ

(ı)
j,k|Y 〉.

Scale-free phase synchronization measures. Given a pair

of signals Ym, Ym′ , the complex wavelet transform analogs

to their Fourier spectra (for m = m′) and cross-spectrum (for

m �= m′) can be defined as

SW
mm′(j) �

1

nj

nj
∑

k=1

dYm
(j, k)d∗Ym′

(j, k) (4)

where nj ≈ N
2j are the number of coefficients available at

scale j, and ∗ stands for the complex conjugate. Similarly, we

define the wavelet coherence as

w-COHmm′(j) �
SW
mm′(j)

√

SW
mm(j)SW

m′m′(j)
. (5)

Note that unlike the standard DWT coherence used in, e.g., [9],

w-COHmm′(j) is complex-valued. We denote the imaginary

part as w-ICOHmm′(j) � ℑ{w-COHmm′(j)}.

This allows us to define an alternative to the Fourier coherence

based weighted phase lag index (3) that is suited to scale-free

signals, the wavelet weighted phase lag index (w-wPLI)

w-wPLImm′(j) �

∣

∣

∑nj

k=1 ℑ
{

dXm
(j, k)d∗Xm′

(j, k)
}
∣

∣

∑nj

k=1

∣

∣ℑ
{

dXm
(j, k)d∗Xm′

(j, k)
}∣

∣

, (6)

with the following key properties: i) it inherits from (3)

the sensitivity to phase synchronizations and robustness to

volume conduction effects and noise perturbations; ii) it can be

relevantly assessed for infraslow scale-free dynamics thanks to

the theoretical and practical benefits of the wavelet transform

for self-similar signals [2]. For the numerical results reported

here, we make use of q-shift wavelets as described in [18] and

references therein (see, e.g., [19] for an alternative choice).

Illustration for synthetic data. The proposed multiscale

phase synchronization indices are illustrated in Fig. 1 for one

realization of operator fractional Brownian motion (ofBm), a

multivariate version of self-similar fractional Brownian motion

[20]. Results are obtained for two correlated (ρ = 0.7) ofBm

components Y1, Y2 with different self-similarity exponents H
(show in the top panel), without delay (∆ = 0, second row)

and with delay (∆ = 2 samples, bottom row), respectively.

They clearly indicate that while w-COH cannot distinguish

volume conduction inducing instantaneous coupling (∆ = 0)

from non-trivial (∆ = 2) phase synchronization, w-ICOH and

w-wPLI provide unbiased estimators of phase synchronization

that are at the same time robust to volume conduction and

sensitive to phase coupling in scale-free signals.

III. DATA

MEG recordings from 36 healthy participants (mean age:

22.1 +/- 2.2) were used in this study. All participants were

right-handed, had normal hearing and normal or corrected-to-

normal vision. Before the experiment, all participants provided

a written informed consent in accordance with the Declaration

of Helsinki (2008) and the local Ethics Committee on Human

Research at NeuroSpin (Gif-sur-Yvette, France).

Y1(k)

Y2(k)

H1 = 0.05, H2 = 0.2, ρ = 0.7

2 4 6 8 10 12

w-COH
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−1

2 4 6 8 10 12

w-ICOH

j
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1

−1

2 4 6 8 10 12
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j
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Fig. 1. Scale-free phase synchronization indices. Illustration for synthetic
data: correlated components Y1(k) and Y2(k) of ofBm with different self-
similarity exponents H (top panel) and complex wavelet transform multiscale
indices w-COH (magnitude), w-ICOH and w-wPLI (from left to right)
obtained for signals without delay (second row) and with delay of ∆ = 2
samples (i.e., for Y1(k), Y2(k +∆), bottom row).

The experiment consisted of interleaved blocks alternating

between rest and task (detailed description in [12]). During

the 5 minutes rest blocks, participants kept their eyes opened,

and were not following any explicit instruction, allowing for

the analysis of spontaneous fluctuations of MEG brain activity.

The 12 minutes task blocks consisted of visual motion discrim-

ination. Visual stimuli consisted of two colored and intermixed

populations of moving dots. Participants were asked to tell

which of the red or green cloud of dots was more coherent.

Seven levels of visual coherence (15%, 25%, 35%, 45%, 55%,

75% and 95%) were tested; 28 trials per coherence level were

collected for a total of 196 trials.

Brain activity was recorded in a magnetically shielded room

using a 306 MEG system (Neuromag Elekta LTD, Helsinki).

MEG signals originally sampled at 2 kHz were downsampled

at 448 Hz. MEG signals were preprocessed to remove external

and internal interferences, in accordance with accepted guide-

lines for MEG research [21]. Signal Space Separation (SSS)

was applied with MaxFilter to remove exogenous artifacts

and noisy sensors [22]. Ocular and cardiac artifacts were

removed using Independent Component Analysis (ICA) on

raw signals. ICA were fitted to raw MEG signals, and sources

matching the ECG and EOG were automatically found and

removed before signals reconstruction. Source localization

from MEG signals was used to estimate cortical activity in

28 selected cortical regions of interest (ROIs) involved in

task performance including frontal, somatosensory, temporal,

parietal and occipital areas in [12].

IV. SCALE-FREE FC ANALYSIS IN MEG

A multi-scale FC analysis was performed on brain ongoing

activity in order to explore the scale-free slow frequency

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1413



Fig. 2. Top: Strongest functional interactions estimated at rest using the
complex wavelet wPLI (w-wPLI ∈ (0, 1), left) and coherence (w-COH ∈

(0, 1), right) indices, respectively. Bottom: Strongest functional interactions
during task performance. Here colors code FC values between pairs of ROIs.

regime (0.1-1.5 Hz). The 28 ROI time series used for that

purpose were thus not epoched as usually done for FC

analysis in oscillatory regimes. Next, w-wPLI was computed

to estimate bivariate phase coupling and compared to the

complex wavelet coherence w-COH. For this, wavelet-based

FC indexes were averaged over the scales corresponding to

the frequency regime of interest. Two experimental conditions

were considered, namely resting-state and task. The goal was

to prove the gain brought by the w-wPLI approach in terms of

sensitivity and specificity for detecting changes in FC patterns

in the scale-free regime as compared to other FC measures.

FC networks in the scale-free regime. The group-

level (N = 36) full 28 × 28 FC matrices extracted from

rest and task-related activity and averaged in the scale-free

regime (8 � j � 12 corresponding to 0.09Hz � f � 1.5Hz)

were filtered using a network density threshold [23]. The

FC networks obtained using w-wPLI (Fig. 2A) and w-COH

(Fig. 2B) present very different structures. In fact, coherence-

based FC patterns show the predominance of short range

interactions throughout the cortex both at rest and during task,

likely resulting from residual common source effects which

affect the real part of coherence [10]. In contrast, long range

fronto-occipital connectivity emerges in w-wPLI based FC

patterns. As a sanity check, we also assessed multi-scale FC

using wavelet-based imaginary coherence w-ICOH. The latter

measure yielded similar results as those obtained using w-

wPLI. The w-wPLI index presumably represents a potential

improvement over w-ICOH in detecting phase synchroniza-

tion, as the former method is independent of the magnitude

of the phase leads and lags, whereas the latter is strongly

influenced by the phase of the wavelet coherence (5), cf. [10].

In order to investigate significant group-level differences

in scale-free FC patterns between task and rest blocks, we

performed a group-level paired t-test. The false discovery rate

(FDR) control procedure was used to correct p-values for

multiple comparisons. Interestingly, we observed a significant

(p < 0.01) increase of w-wPLI in task as compared to rest

(Fig. 3A). A similar FC pattern of differences was observed

Fig. 3. Left: Statistically significant Task vs Rest FC pattern estimated using
the w-wPLI index. Right: Same contrast using the wavelet based imaginary
coherence (w-ICOH ∈ (−1, 1)) index that also captures phase coupling. Here
colors code the (task-rest) difference of FC values.

Fig. 4. Top: Strongest functional interactions estimated at rest using the w-
wPLI index, in the α (j = 5, left) and β (j = 4, right) bands, respectively.
Bottom: Strongest functional interactions estimated during task using the w-
wPLI index, in the α (left) and β (right) bands, respectively.

using w-ICOH (Fig. 3B), while no significant difference was

detected using w-COH. These results suggest a stronger effi-

ciency of w-wPLI for detecting long range FC changes in the

slow frequency regime as compared to w-ICOH.

FC networks in the oscillatory regime. In order to

show the specificity of FC patterns in the scale-free regime,

oscillatory regimes were then explored using w-wPLI and w-

COH; for comparison purposes, the scales corresponding to the

widely studied α (8-12 Hz) and β (13-30 Hz) rhythms were

considered in this analysis. Specifically, at the scales corre-

sponding to the α and β bands (j = 5 and j = 4, respectively)

the density filtered networks based on the w-wPLI measure

were characterized by short range FC, both at rest and during

task blocks (Fig. 4), whereas long range connections dominate

the pattern in the scale-free regime (Fig. 2A).

Moreover, α-band FC patterns (Fig. 4-left) showed higher

phase synchronization values compared to the β-band (Fig. 4-

right), and mainly involved occipital regions known to con-

vey synchronized α oscillations. FC networks in the β-band

showed different patterns involving frontal and parietal regions

both at rest and during task. Interestingly, these estimated

patterns support the commonly observed association of β oscil-

lations, which are of relatively low amplitude, with endogenous

and top-down controlled processing involving high level brain

structures of frontal and parietal cortices. Here, the prevalence

of short range connections in the observed β band FC reflects

the sensitiveness of w-wPLI to shorter time delay at higher
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Fig. 5. Top: Strongest functional interactions estimated at rest using the w-
COH phase coupling index, in the α (j = 5, left) and β (j = 4, right) bands,
respectively. Bottom: Strongest functional interactions estimated during task
using the w-COH index, in the α (left) and β (right) bands, respectively.

frequency regimes (Fig. 1). We performed the same analysis

in the α and β-bands using the wavelet-based coherence (w-

COH). The corresponding FC networks did not show the same

centrality of connected occipital regions in α-range (Fig. 5A),

neither the lower phase synchronization in β-range (Fig. 5B).

On the other hand, these networks look very similar to the ones

observed in the scale-free regime. This confirms the sensitivity

of coherence-based FC indices to volume conduction effect

regardless of the scale.

Interestingly, no significant difference was observed in the

oscillatory regimes between rest and task-related networks

using the tested multiscale measures. Overall, our results

support the effectiveness of w-wPLI to detect changes of scale-

free phase synchronization, and its robustness with respect to

common source artifacts as compared to coherence measures.

V. CONCLUSION

This work proposed a novel multiscale phase synchroniza-

tion measure for the assessment of functional connectivity

in scale-free brain dynamics regime. To this end, the key

intuitions of Fourier coherence based indices for oscillatory

regimes, lending robustness against volume conduction effects

in MEG, are combined with scale-free dynamics analysis in

the complex wavelet transform domain. To the best of our

knowledge, the proposed tool constitutes the only existing

operational procedure for the robust quantification of phase

synchronization in scale-free time series. Applied to MEG data

for 36 individuals, this tool brought evidence for the pres-

ence of significant group-level scale-free FC networks, which

are distinct from those classically uncovered with oscillatory

regimes. It is noteworthy that only scale-free synchronization

measures captured the variations in long-range phase synchro-

nization between rest and task. Future work will focus on the

functional role of those scale-free FC patterns.
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