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Abstract—The Angular Resolution Limit (ARL), denoted by
δ, is a key statistical quantity to measure our ability to resolve
two closely-spaced narrowband far-field complex sources. In the
literature, the ARL, denoted by δ0, is systematically assumed
to be perfectly known for mathematical convenience. In this
work, our knowledge on the ARL is supposed to be only partial,
meaning that δ ∼ N (δ0, σ

2

δ ). The degree of uncertainty is
quantified by the ratio ξ = δ20/σ

2

δ . Based on the Chernoff Upper
Bound (CUB) on the minimal error probability, we show that
the CUB is highly dependent on the degree of uncertainty, ξ. As
by-product, the optimal s-value for which the CUB is the tightest
upper bound is analytically studied.

Index Terms—Angular Resolution Limit, model of uncertainty,
upper bound on the error probability.

I. INTRODUCTION

The resolvability of closely spaced signals, in terms of

parameter of interest, for a given scenario (e.g., for a given

Signal-to-Noise Ratio (SNR), a given number of snapshots

and/or a given number of sensors) is a former and challenging

problem which was recently updated by Smith [1], Liu and

Nehorai [3], Amar and Weiss [2] or Sharman and Milanfar

[11]. More precisely, the concept of Statistical Resolution

Limit (SRL), i.e., the minimum distance between two closely

spaced signals embedded in an additive noise that allows a

correct resolvability/parameter estimation, is rising in several

applications especially in problems such array processing [7],

[8], [10], MIMO radar [4], [5], [6], or multidimensional har-

monic estimation [9]. In this literature, the Angular Resolution

Limit (ARL), denoted by δ0, is always modelled as a perfectly

known deterministic parameter. In practice, this assumption

is somewhat unrealistic since generally, the knowledge of

the ARL is only partial. It is clear that assuming a perfect

knowledge of the ARL leads to too optimistic conclusions.

In this work, the uncertainty on the ARL is taken into

account modelling the ARL as a random variable such that

δ ∼ N (δ0, σ
2
δ ). Consequently, the degree of uncertainty is

quantified by the ratio ξ = δ20/σ
2
δ . Indeed, for ξ → ∞, δ → δ0

can be considered as perfectly known. On the contrary, for

ξ → 0, our degree of uncertainty tends to be maximal.

The detection performance for a random quantity in terms of

minimal error probability is analytically intractable [12]. To

alleviate this technical difficulty, we exploit some powerful

tools from the theory of Information Geometry [14] and in

particular the Chernoff Upper Bound (CUB) on the minimal

error probability [13].

II. INFORMATION GEOMETRY FRAMEWORK

A. The Bayes’ detection theory

Let Pr(Hi) be the a priori hypothesis probability with

Pr(H0)+Pr(H1) = 1. Let Pr(y|Hi) and Pr(Hi|y) be the i-th
conditional hypothesis and the posterior probabilities, respec-

tively. The Bayes’ detection rule chooses the hypothesis Hi

associated with the largest posterior probability Pr(Hi|y). In-

troduce the indicator hypothesis function according to φ(y) ∼
Bernou(α) where Bernou(α) stands for the Bernoulli distri-

bution of success probability α = Pr(φ(y) = 1) = Pr(H1).
Function φ(y) is defined on X → {0, 1} where X is the data-

set of cardinality |X | enjoying the following decomposition

X = X0 ∪ X1 where X0 = {y : φ(y) = 0} = X \ X1 and

X1 = {y : φ(y) = 1} =

{

y : Ω(y) = log
Pr(H1|y)

Pr(H0|y)
> 0

}

where Ω(y) is the log posterior-odds ratio. The average

probability of error is

Pe = Ey {Pr(Error|y)} (1)

with

Pr(Error|y) =

{

Pr(H0|y) if y ∈ X1,
Pr(H1|y) if y ∈ X0.

The standard strategy to minimize Pr(Error|y) for a given

y is min {Pr(H0|y),Pr(H1|y)} [12]. So using (1), the min-

imal average error probability can be expressed as

Pe = Ey

{

min {Pr(H0|y),Pr(H1|y)}
}

Using Bayes’ relation, we obtain

Pe =

∫

X

min
{

(1− α)p0(y), αp1(y)
}

dy (2)

where pi(y) = Pr(y|Hi).

B. Chernoff Upper Bound (CUB) and asymptotic error expo-

nent

Using the property that min {x, z} ≤ xsz1−s with x, z > 0
and s ∈ (0, 1) in (2), the minimal error probability is upper

bounded according to

Pe ≤
1− α

βs
Ey {exp[−Cy(s)]} (3)
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where β = 1−α
α

and

Cy(s) = − log

∫

X

p0(y)
1−sp1(y)

sdy (4)

is the (Chernoff) s-divergence. The term Cy(s) characterizes

the exponential rate of the error exponent of Pe. The Chernoff

information, denoted by Cy(s), is an asymptotic characteriza-

tion on the best achievable Bayes’ error probability. It is worth

observing that the integral in (4) can be reformulated as
∫

X

p0(y)
1−sp1(y)

sdy =

∫

X

p1(y)
s

p0(y)s
p0(y)dy

=

∫

X

exp [sΓ(y)] p0(y)dy

= Ey|H0
{exp (sΓ(y))}

= MΓ(y|H0) (s) (5)

where Γ(y) = log
(

p1(y)
p0(y)

)

and MX (s) is the Moment

Generating Function (MGF) of the random variable X .

III. BINARY HYPOTHESIS TEST AND LARGE DEVIATION

ANALYSIS

A. Signal and noise models

Consider two far-field and narrowband complex sources

denoted by s1(t) and s2(t) measured for the t-th snapshot.

The observation on the `-th sensor of an uniform linear array

and for the t-th snapshot is given by

y`(t) = s1(t) · [a(ω1)]` + s2(t) · [a(ω2)]` + w`(t)

where [a(ωm)]` = exp[j · ωm · (` − 1)] for 1 ≤ m ≤ 2,

1 ≤ ` ≤ L with L the number of sensors. We are interested

in quantifying our ability to resolve the two closely spaced

sources s1(t) and s2(t). Each source collected over T snap-

shots is denoted by the vector s1 and s2, respectively. The

noise w`(t) is assumed to be Gaussian distributed, temporally

white (each noise snapshot is independent of the others),

but spatially correlated such that, the collected noise over T
snapshots w is w ∼ CN (0, σ2M) .

Let δ = ω2−ω1 be the ARL between the two sources. The

closely-spaced assumption means that δ is small. The detection

problem of interest can be formulated as a binary hypothesis

test as follows:
{

H0 : δ = 0,
H1 : δ 6= 0.

(6)

As δ is small, by using the first order Taylor expansion

around the so-called centre parameters ωc =
ω1+ω2

2 , we obtain

a(ω1)
1
≈ a(ωc) −

j
2δȧ(ωc) and a(ω2)

1
≈ a(ωc) +

j
2δȧ(ωc),

where symbol
1
≈ stands for first-order approximation and

ȧ(ωc) = ∂a(ωc)
∂ωc

. We can write the linear (TL) × 1 approxi-

mated vector as follows1

y
1
≈ µδ +w

1See [11], [8] for the full derivations and calculus.

where µδ = a(ωc)⊗ (s1 + s2) +
j
2δȧ(ωc)⊗ (s2 − s1).

Let us consider the case in which the two sources s1 and

s2 and ωc are known. We define the new observation vector

z = y − a(ωc)⊗ (s1 + s2). This assumption is realistic in a

supervised system where the sources are pilot-assisted. In this

case the hypothesis test (6) becomes
{

H0 : z = w

H1 : z = δp+w

where p =− j
2 ȧ(ωc)⊗ (s2 − s1).

In our scenario we suppose that we do not have full

knowledge of the true angular distance δ between the two

sources. We only known its mean value δ0. To deal with this

uncertainty, we model the amplitude of the vector p as a

Gaussian random variable with mean value δ0 and variance

σ2
δ , i.e. δ ∼ N (δ0, σ

2
δ ).

With this model we can now derive Γ(z) and solve the

integral in (5). It is possible to prove that

Γ(z) = log

(

p1(z)

p0(z)

)

= log
|M0|

|M1|
− (z− δ0p)

H
M−1

1 (z− δ0p) + zHM−1
0 z

= log
|M0|

|M1|
− zH

(

M−1
1 −M−1

0

)

z

+ 2Re
{

δ0z
HM−1

1 z
}

− δ20p
HM−1

1 p (7)

where M0 = σ2M, M1 = σ2M+ σ2
δpp

H and |R| stands for

the determinant of the matrix R. Using Woodbury’s identity

[12] we can derive that

M−1
1 = M−1

0 −
σ2
δM

−1
0 ppHM−1

0

1 + σ2
δp

HM−1
0 p

. (8)

Replacing eq. (8) in (7), we obtain

Γ(z) = log
|M0|

|M1|
+

σ2
δ

∣

∣zHM−1
0 p

∣

∣

2

1 + σ2
δp

HM−1
0 p

+ 2Re

{

δ0z
HM−1

0 p

1 + σ2
δp

HM−1
0 p

}

−
δ20p

HM−1
0 p

1 + σ2
δp

HM−1
0 p

. (9)

The key statistic that appears in the previous equations

is t = zHM−1p = tI + jtq , the output of a whitening

matched filter [12], where tI = Re
{

zHM−1p
}

and tQ =
Im

{

zHM−1p
}

. Under the hypothesis H0, E {tI |H0} =

E {tQ|H0} = 0 , var (tI |H0) = var (tI |H0) =
σ2

2 pHM−1p

and the random variables tI and tQ are Gaussian distributed

and independent [12].

Observing that |M1|=|M0|
(

1 + σ2
δp

HM−1
0 p

)

and recalling

that M0 = σ2M we can rewrite eq. (9) as follows

Γ (z) = log
σ2

σ2 + a
+

σ2
δ

σ2 (σ2 + a)

(

t2I + t2Q
)

+
2δ0

σ2 + a
tI −

b

σ2 + a

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 629



where a = σ2
δp

HM−1p and b = δ20p
HM−1p. Grouping

all the terms with tI , after some calculations, we obtain

Γ (z) = log
σ2

σ2 + a
+

σ2
δ

σ2 (σ2 + a)

(

tI +
δ0σ

2

σ2
δ

)2

+
σ2
δ

σ2 (σ2 + a)
t2Q −

δ20σ
2

σ2
δ (σ

2 + a)
−

b

σ2 + a

then

Ez|H0
{exp (sΓ(z))} =

(

σ2
)s

(σ2 + a)
s exp

(

−s
δ20σ

2 + bσ2
δ

σ2
δ (σ

2 + a)

)

·My1|H0
(s)My2|H0

(s) (10)

where Y1|H0 =
σ2

δ

σ2(σ2+a)

(

tI +
δ0σ

2

σ2

δ

)2

and Y2|H0 =

σ2

δ

σ2(σ2+a) t
2
Q .

We can prove that Y1|H0 is a non-central random variable

χ2
1 (d, λ) where d = a

2(σ2+a) is the scale parameter and λ =

2
δ2
0
σ2

aσ2

δ

in the non-centrality parameter.

Conversely Y2|H0 is a central χ2
1 (d) random variable.

Now we are able to write My1|H0
(s) and My2|H0

(s)
according to

My1|H0
(s) =

1
√

1− a
σ2+a

s
exp





δ20
σ2
δ

sσ2

σ2 + a

1
(

1− a
σ2+a

s
)





(11)

and

My2|H0
(s) =

1
√

1− a
σ2+a

s
(12)

For ease, let define the SNR at the output of the whitening

matched filter t = zHM−1p according to

SNR = γ
E
{

∣

∣δpHM−1p
∣

∣

2
}

E
{

|dHM−1p|
2
}

=

(

δ20 + σ2
δ

)

σ2
pHM−1p =

a+ b

σ2
.

To further simplify eq. (10) we observe that ξδ20/σ
2
δ = b/a,

then a = b/ξ and σ2 = b (ξ + 1) /(ξγ). With this notation

and replacing (11) and (12) in (10) we obtain

Ez|H0
{exp (sΓ(z))} =

(1 + ξ)
s

(1 + ξ + γ)
s

exp (−sξ)

1− s γ
1+ξ+γ

· exp

[

ξ (1 + ξ) s

1 + ξ + γ (1− s)

]

(13)

Replacing now (13) in (3), we finally get the CUB

Pe ≤
1− α

βs

(1 + ξ)
s

(1 + ξ + γ)
s

1

1− s γ
1+ξ+γ

· exp

[

−
ξγ (1− s) s

1 + ξ + γ (1− s)

]

. (14)

TABLE I
smin VS ξ

ξ 0.1 0.2 0.5 1 2 5 10

β = 1 0.8565 0.857 0.858 0.861 0.869 0.883 0.884

β = 0.333 0.8291 0.8293 0.831 0.837 0.848 0.870 0.875

From eq. (14) it is evident that the CUB does not depend

on δ20 and σ2
δ separately, but only on their ratio ξ and on γ.

For low values of SNR, γ << 1. Under this hypothesis eq.

(14) can be approximated as

Pe ≤
1− α

βs
exp

[

ξγ

1 + ξ
s (−1 + s)

]

and the value of s for which the bound is minimum is

s = 1
2 + 1+ξ

2ξγ log(β) (provided that s > 0). When Pr(H0) =

Pr(H1), β = 1 and s = 1
2 .

In the more general case smin can be calculated as the

unique solution in the range (0, 1) of the 2nd order equation

s2 −
γ2 − 2K0γ (1 + ξ + γ)

K0γ2
s

+
K0 (1 + ξ + γ)

2 − (1 + ξ + γ) ((1 + ξ) ξ + γ)

K0γ2
= 0 (15)

where K0 =
(

ξ − log 1+ξ
(1+ξ+γ)β

)

. This equation has been

derived by calculating the log of the CUB and then by

derivating it with respect to s.

B. Analysis of the results

In order to vary the uncertainty on the value of the ARL

and to analyse its impact on the CUB, we have defined the

parameter ξ = δ20/σ
2
δ , that is, the ratio between the square

mean value of the ARL and its variance. For low values of ξ
the variance of the ARL is large, so the uncertainty is high.

Conversely, for high values of ξ the uncertainty is small.

In the following figures 1 and 2 we show the smin as a

function of the SNR, with β = 1 (α = 0.5, the two hypotheses

are equiprobable) and β = 0.333 (α = 0.75) respectively, for

different values of the parameter ξ. As expected for low values

of SNR and β = 1 smin = 0.5. It is worth observing that the

behaviour of smin , derived from eq. (15), highly depends on

ξ . The values of smin increases monotonically with SNR for

every value of ξ and of β.

In figure 3 the corresponding CUB is plotted as a function

of ξ for SNR = 30dB. It is clear again from these curves

that the impact of the uncertainty on the CUB is very large.

Passing from ξ = 1, for which, for instance, δ0 = 0.1 and

σ2
δ = 10−2, to ξ = 10, for which δ0 = 0.1 and σ2

δ = 10−3,
the CUB changes of more than 2 orders of magnitude. We can

then conclude that, considering the ARL always deterministic

and known can be very optimistic.

The values of smin corresponding to some of the tested

values of ξ in figure 3 are reported in Table I
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Fig. 1. smin vs SNR, β = 1
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Fig. 2. smin vs SNR, β = 0.333
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IV. CONCLUSION

Quantifying the resolution of two closed-spaced sources is a

fundamental problem at the heart of challenging applications.

The Angular Resolution Limit (ARL) measures our ability to

resolve two closely-spaced sources in the context of array

processing. Usually in the literature, the ARL is supposed

perfectly known, i.e., modelled as a deterministic variable.

In this work, we choose to relax this too severe assumption.

Indeed, our new ARL is modelled as a random variable such

as δ ∼ N (δ0, σ
2
δ ). In this paper the degree of uncertainty has

been quantified by the ratio ξ = δ20/σ
2
δ . Large (small) ratio

means low (high) uncertainty. Based on the Chernoff Upper

Bound (CUB) on the minimal error probability, we show that

the ARL is highly dependent on the ratio ξ. As a by product,

the optimal s-value for which the CUB is the tightest upper

bound is analytically studied and its independence of δ0 is

proved. In future work we will consider the more general case

of non-Gaussian noise.
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