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Abstract—This paper considers the problem of estimating the
number and state of objects appearing in a sequence of noisy
images. We study the practical considerations involved in the
design of the multi-Bernoulli particle filter in this context. From
the sequential Monte-Carlo approach, we highlight the choices
that must be made in order to implement it when tracking shapes
in images. Numerical results illustrate in particular the advantage
of choosing non-blind proposal densities.

Index Terms—Multi-Bernoulli filter, sequential Monte Carlo,
particle filtering, tracking in images

I. INTRODUCTION

We target the problem of estimating the number and the
state of objects appearing in a sequence of noisy images. This
kind of problem is for instance common in the area of object
tracking, with applications, e.g., in security (moving targets
over the sky) or meteorological data analysis (cloud or plume
tracking). Several filtering methods have been developed in the
last decade to tackle this type of problem. The first major con-
tributions to this field were the introduction of the Probability
Hypothesis Density (PHD) filter targeting single-state spaces
introduced in [1] and its cardinalized version [2]. Both are
first-moment approximations (moment and cardinality) of the
recursive Bayes filter and are in practice implemented within a
Sequential Monte Carlo (SMC) framework [3]. More recently,
the Multi-target-Multi-Bernoulli recursion introduced a way
to approximate the multi-target posterior density itself [4].
Its main advantage resides in the fact that the estimation of
states cardinality and values are performed jointly and not
sequentially as in the PHD filters. Several improvements of
the Multi-Bernoulli Particle Filter (MBPF) were introduced,
including cardinality-balanced [5] or labeled [6] filters for
instance.

In this paper, we study the implementation of a MBPF as
used in [7], i.e. applied on image data under the assumption
that the regions influenced by the objects do not overlap. This
implementation relies on several choices required to perform
the computation within the SMC framework, which are gener-
ally made depending on the expected data to process. Here, we
investigate and evaluate these SMC specificities.

The outline of this paper is the following. Section II recalls
the SMC formulation of the MBPF, then several practical points
are studied in Section III. Then, numerical results allow the
evaluation of these choices in Section IV.

II. SEQUENTIAL MONTE-CARLO IMPLEMENTATION

The MBPF relies on the description of a set of random
states evolving sequentially, the cardinality of which is also
an evolving random variable. This modeling is handled within
the finite-set statistics [4] stemming from the point-process
theory [8], using Random Finite Sets (RFS). This section recalls
the SMC implementation of the MBPF [7].

Let X be a multi-Bernoulli RFS (i.e. a random variable set
whose cardinality is also a random variable), representing the
system states at all instants. The purpose of the filter is to infer
the realization X = x from the realization of an observed image
sequence denoted Y = y

def.
= {y1, . . . , yK}. This inference is

made possible, in a Bayesian setting, thanks to the propagation
of a posterior density from time k = 1 to time K.

At each step k ∈ {1, . . . ,K}, X contains Mk states and its
multi-object posterior density is given by πk = {r(i)

k , p
(i)
k }

Mk
i=1:

• r
(i)
k is the probability of the RFS i−th state to be non-

empty at time k;
• p

(i)
k is comprised of a set of J (i)

k “particles” x paired with
weight w such that:

p
(i)
k (x) =

J
(i)
k∑
j=1

w
(i,j)
k δ

x
(i,j)
k

(x) (1)

In the following we assume J (i)
k fixed and equals to J .

Then, the SMC procedure propagates recursively the poste-
rior πk from k = 1 to k = K based on Monte-Carlo simulation
of particles. In the sequel of this section, we recall the MBPF
SMC implementation from [7].

Given a posterior density πk−1, it relies on two main steps.
The prediction step consists in computing πk|k−1 from the
previous posterior distribution πk−1 using proposal densities.
The update step consists in computing πk using πk|k−1 and the
object likelihood.

A. Prediction step

The posterior πk|k−1 describes two phenomena: the propa-
gation (“P” subset) of an object from time k−1 to time k, and
the creation of new objects at time k (“C” subset). Hence, the
SMC prediction step consists in computing:

πk|k−1 =
{
r

(i)
P,k|k−1, p

(i)
P,k|k−1

}Mk−1

i=1

⋃{
r

(i)
C,k, p

(i)
C,k

}MC,k

i=1
,

(2)
where MC,k is the number of created objects at time k.
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The propagation steps are computed as:∣∣∣∣∣∣∣∣
r

(i)
P,k|k−1 = r

(i)
k−1

J∑
j=1

w
(i,j)
k−1pS,k

(
x

(i,j)
k−1

)
p

(i)
k|k−1(x) =

J∑
j=1

w
(i,j)
P,k|k−1δx(i,j)

P,k|k−1

(x)

, (3)

where pS,k(·) is the survival probability at time k, and the
second line of (3) reads similarly to (1). The states x(i,j)

P,k|k−1

are sampled from the proposal density q(i)
k (see below):

∀j ∈ {1, . . . , L} : x
(i,j)
P,k|k−1 ∼ q

(i)
k

(
· |x(i,j)

k−1 , yk

)
(4)

and the weights are computed using the single-target transition
density fk|k−1(·|x(i,j)

k−1):

w
(i,j)
P,k|k−1 =

w
(i,j)
k−1fk|k−1

(
x

(i,j)
P,k|k−1|x

(i,j)
k−1

)
pS,k

(
x

(i,j)
k−1

)
q

(i)
k

(
x

(i,j)
P,k|k−1|x

(i,j)
k−1 , yk

) (5)

and normalized so that
∑J
j=1 w

(i,j)
P,k|k−1 = 1.

The creation steps are computed as:∣∣∣∣∣∣∣
r

(i)
C,k = “birth” parameter

p
(i)
C,k(x) =

J∑
j=1

w
(i,j)
C,k δx(i,j)

C,k

(x)
, (6)

where the x(i,j)
C,k are sampled from the proposal density b(i)k :

∀j ∈ {1, . . . , L} : x
(i,j)
C,k ∼ b

(i)
k (·|yk) , (7)

and the weights w(i,j)
C,k are computed as:

w
(i,j)
C,k =

pC,k

(
x

(i,j)
C,k

)
b
(i)
k

(
x

(i,j)
C,k |yk

) (8)

and normalized so that
∑J
j=1 w

(i,j)
C,k = 1.

B. Update step

The update step does not require distinction between the
propagated and the created states as in (2) , so we denote for
concision:

πk|k−1 =
{
r

(i)
k|k−1, p

(i)
k|k−1

}Mk−1+MC,k

i=1
. (9)

Denoting gk(·|yk) the likelihood of a given state, the update
step is computed as:∣∣∣∣∣∣∣∣

r
(i)
k =

r
(i)

k|k−1
%
(i)
k

1−r(i)
k|k−1

+r
(i)

k|k−1
%
(i)
k

p
(i)
k (x) = 1

%
(i)
k

J∑
j=1

w
(i,j)
k|k−1gk

(
x

(i,j)
k|k−1|yk

)
δ
x
(i,j)

k|k−1

(x)

(10)
where %(i)

k =
∑J
j=1 w

(i,j)
k|k−1gk

(
x

(i,j)
k|k−1|yk

)
.

Summing up, the SMC implementation allows a recursive
computation of the posterior density πk. Then, ∀k,∀i, the
estimation of x

(i)
k is obtained by computing the weighted

average of the J particles x(i,j)
k by w(i,j)

k .

III. PRACTICAL DESIGN

With regards to the SMC implementation described in Sec-
tion II, the choices to make are investigated in this section,

with a focus on proposal densities and states appearance and
disappearance.

A. General setting

State model. The first choice to make concerns the state
we wish to model. We choose to use in the sequel a para-
metric model with the case of 2D truncated Gaussian shapes,
with varying positions, scales and intensities (detailed below).
Hence, for all step k and sources i, x(i)

k
def.
= {s, σ, a}(i)k where

s ∈ R2 represents the position, σ ∈ R is the 2D Gaussian
standard deviation, and a ∈ R is its maximum intensity.

Likelihood function. Computing the likelihood gk (10) of
an object x(i)

k with respect to the image yk often leads to
computational overflow, due to the large number of pixels (e.g.
2002 in Section IV). An efficient alternative consists in using
the product of pixel-wise likelihood ratios within the image
lattice S:

gk(x
(i)
k |yk) =

∏
s′∈S

p
(
yk,s′ |h(s′, x

(i)
k )
)

p(yk,s′)
(11)

where h(s′, x
(i)
k ) represents the intensity of the 2D truncated

Gaussian parametrized by x(i)
k at the position s′:

h(s′, x
(i)
k ) = a

(i)
k exp

(
−
‖s′ − s(i)

k ‖2

2σ
(i)2
k

)
1 ‖s′−s

(i)
k ‖

2

2 log(100)σ
(i)2
k

<1


(12)

The right-hand densities in (11) are Gaussian centered on the
underlying intensity, whose values are either 0 or given by h
and known variance.

Initial values. In order to evaluate accurately the other MBPF
implementation specificities, we consider for step 0 the true
state values from step 1.

Birth parameter and survival probability. We choose to
associate the birth parameter r(i)

C,k (6) to the values of the
weights computed in the creation step (8):

r
(i)
C,k = 1 if at least one weight w(i,j)

C,k > 0.5 (13)
and 0 otherwise. Beside, we choose to have no prior on the
survival probability of each particle x(i,j)

k , so pS,k(x
(i,j)
k−1) ∝ 1.

Here and in the following, the ∝ sign means the right-hand
element is a distribution over the state domain D ⊂ R4.

Resampling. In most PF methods, an additional resampling
step is required to avoid weights degeneracy [9]. We choose
to use the stratified resampling method [10], [11] after each
update step.

B. Proposal densities

1) Propagation: Target objects are assumed to move slowly
from time k to time k + 1. In practice, this means that their
movement should be well captured by normal distributions
centered on the previous state values. Beside, we assume the
movement to be steady: for k > 2, speed as evaluated between
x

(i)
k−1 and x

(i)
k−2 is conserved. Let us denote x

(i)
k = x

(i)
k−1 if

k ≤ 2, and x(i)
k = 2x

(i)
k−1 − x

(i)
k−2 otherwise:

q
(i)
k

(
x

(i)
k |x

(i)
k−1, yk

)
∝ N

(
x

(i)
k ,Σ

)
(14)
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Σ ∈ R4×4 is a diagonal covariance matrix, whose values are
set accordingly to a priori expected values.

Track independence. As in [7], we assume the regions in the
image which are influenced by the objects do not overlap. To
enforce this, the propagation proposal density becomes:

q
(i)
k

(
x

(i)
k |x

(i)
k−1, yk

)
∝ N

(
x

(i)
k ,Σ

)
× 1{

s
(i)
k 6∈

⋃
i′ 6=i

D
(i′)
k

}, (15)

where D(i)
k and s(i)

k represent the image coverage of state i at
time k and its expected position, respectively. This coverage is
chosen as a disk-region centered on s(i)

k , whose radius equals
the expected scale σ(i)

k .
Transition density. In the following, we assume that

fk|k−1(x
(i)
k |x

(i)
k−1) = q

(i)
k (x

(i)
k |x

(i)
k−1, yk) as defined in (15).

Observation dependency. The proposal density (15) does not
account for the observed image yk, and is referred as “blind”
hereafter. We propose to use the intensity information as a clue
for describing the position distribution. The image being noisy,
intensities must be smoothed. DenotingM(yk) ∝ yk∗F with F
a 2D Gaussian kernel of standard deviation Σ3,3, the “Matched
Filter” (MF) proposal density is:

q
(i)
k

(
s

(i)
k |x

(i)
k−1, yk

)
∝ N

(
s

(i)
k ,Σ

)
×1{

s
(i)
k 6∈

⋃
i′ 6=i

D
(i′)
k

}×M(yk)

(16)
2) Creation: Choosing the proposal density b(i)k also requires

to consider track independence. The “blind” proposal density
is

b
(i)
k (x

(i)
k |yk) ∝ UD

(
x

(i)
k

)
× 1{

s
(i)
k 6∈

⋃
i′ 6=i

D
(i′)
k

} (17)

where UD is the uniform density over the state domain D ⊂ R4.
It is also possible to use image information, yielding similarly

to (16) a MF proposal density:

b
(i)
k (x

(i)
k |yk) ∝ UD

(
x

(i)
k

)
×1{

s
(i)
k 6∈

⋃
i′ 6=i

D
(i′)
k

}×M(yk). (18)

Enforcing a dependency to the image in the prediction step
may hinder the SMC processing in the case of non-ideal
images. Thus, evaluation will address both the blind (15)(17)
and the MF (16)(18) proposal densities.

C. Birth and death

The propagated object i at time k exists with probability
r

(i)
k , and its created counterpart with probability r

(i)
C,k. The

estimations of these parameters (10)(13) make possible to use
them as a criterion to decide if a track appears (“birth”) or
disappears (“death”). More precisely, at time k and for object
i, the following decision rules are followed:∣∣∣∣∣ Birth if r(i)

C,k = 1

Death if r(i)
k < 0.5 and r(i)

k−1 > 0.5
(19)

Once an object appeared, its state is appended to the estimated
RFS of objects to propagate. If an object disappears its state is
removed from this RFS, and is not tracked anymore.

Remark. The “merge” and “split” phenomena are not con-
sidered in this paper, but could be designed heuristically, e.g.

Fig. 1: Ground truth: each 2D Gaussian x(i)
k is represented at

position s(i)
k by a disk of radius σ(i)

k , with color depicting k and
transparency proportional to a

(i)
k . Superimposed black curves

represent the trajectories of s(i)
k for all objects i.

deciding that a birth close to an existing trajectory is a split
move. Such heuristic would need specific evaluation, which is
out of the scope of this paper.

IV. NUMERICAL STUDY

A. Setting

The purpose of this section is to evaluate numerically the
MBPF filter when tracking Gaussian shapes in images. We use
as a ground truth the position, size and intensities depicted in
Figure 1: I = 5 objects coexist in 2002-pixel images over K =
20 time steps, with two objects appearing and three objects
disappearing in this interval.

We evaluate the consequences of choosing blind (15)(17)
versus MF (16)(18) proposal densities. We process images
corrupted by a centered Gaussian additive noise with a varying
standard deviation, noted σnoise. Its value is tuned according to
the SNR, such that: SNR = 20 log10

(
h/σnoise

)
, h being the

average of non-zeros intensities in a noiseless image.
Besides, we study two scenarios, depicted in Figure 2:
• an empty background, so the image contains only objects

and Gaussian noise;
• a cluttered background, scaled in intensity so that the

SNR of shapes and background always equals 0 dB. This
scenario is expected to hinder the filtering when using MF
proposal densities (16)(18).

B. Evaluation metric

The experiments yield, for each configuration, an estimation
X̂ of the true track set X . Evaluating the correctness of X̂
with respect to X requires a specific metric, since at a given
time the two sets may differ in cardinality: one may over- or
under-estimate the number of tracks.

The most common metric employed for this purpose is the
Optimal Sub-Pattern Assignment (OSPA) metric [12]. It relies
on a “truncated” distance, which is defined for two states a, b ∈
D ⊂ R4 as d(c)(a, b) = min (c, ‖a− b‖), where c > 0 is a
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k = 1 k = 3 k = 5 k = 7 k = 9 k = 11 k = 13 k = 15 k = 17 k = 19

Fig. 2: Realizations of Y , at SNR = 0 dB in the empty- and cluttered-background case (first and second line respectively).

distance parameter. Given two states sets a ∈ Dn and b ∈ Dm

such that m ≥ n, the OSPA metric is defined as:

d(c)
p (a, b) =

(
1

n

(
min
π∈Πn

m∑
i=1

d(c)(ai, bπ(i))
p + cp(n−m)

)) 1
p

(20)
where Πn is the set of all permutations of {1, . . . , n}, and p ≥ 1
is an OSPA parameter.

This distance if often used as a way to account for both
cardinality and value errors, balanced by the parameter c. Ac-
cording to [12], choosing c close to the error average magnitude
imply that value error are emphasized over cardinality errors,
and conversely if c is close to the domain size. However, when
considering the 4-valued Gaussian we see that:
• the OSPA distance operates over heterogeneous values,

e.g. positions and intensities;
• the typical scales are not the same along the 4 dimensions,

so there is no clearly defined “average error magnitude”
to set c.

In consequence, we use a scaled version of OSPA (denoted
SOSPA hereafter), in which the states values are scaled from
their domain D to [0, 1]4. Then, we set c = 0.5 to balance
equally cardinality and value errors, and choose p = 1.

C. Discussion

Figure 3 reports the averaged results over time at SNR =
0 dB and the time-averaged results at all SNR. Several obser-
vations can be made:
• when processing empty-background images, the MF pro-

posal functions yields significantly better results than its
blind counterpart. This phenomenon is expected, as this
situation generally favors matched-filtering methods;

• when the background is cluttered, MF proposal densities
do yield higher average OSPA errors than with an empty
background. However, this choice still yields better results
than using the blind proposal densities.

We should however notice that errors are non-zero even in the
most favorable cases. We observed two recurring phenomena:
the late detection of object death, and the underestimation
of object intensities which contributes notably to the SOSPA
values. Future works should, among others, tackle these issues.
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Blind
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0 5 10 15
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(a) SOSPA errors over time with SNR = 0 dB.
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(b) Time averaged SOSPA errors with varying SNR.

Fig. 3: Average SOSPA error as evaluated on 100 filtering
results, with the colored region covering the first to third
quartiles. Left: empty background, right: cluttered background.

V. CONCLUSION

In this paper, we described thoroughly the SMC implemen-
tation of the MBPF filter for tracking multiple targets in image
sequences. The design of proposal functions to account or not
for the observed image was evaluated on synthetic images in
favorable and unfavorable conditions. Several perspectives stem
from this work, including the tracking of non-parametric shapes
and the application on mesoscale convective systems in remote
sensing images.
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