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Abstract—This paper proposes an efficient real-time 

multirate fast transient-sound detection algorithm on the basis of 
emerging microphone array configuration intended for 
multimedia signal processing application systems such as digital 
smart home. The proposed detection algorithm first extracts the 
dynamics and periodicity features, then trains the model 
parameters of these features on Amazon machine learning 
platform. The real-time testing results have shown that the 
proposed algorithm with the trained model parameters can not 
only achieve the optimum detection performance in all various 
noisy conditions but also reject all kinds of interferences 
including undesired voice and other unrelated transient-sounds. 
In comparison with the existing algorithms, the proposed 
detection algorithm significantly improves the false negative and 
false positive performance. In addition, the proposed multirate 
strategy dramatically reduces the computational complexity and 
processing latency so that the proposed algorithm can serve as a 
much more practical solution for the digital smart home related 
applications. 

Keywords—feature extraction; fast transient-sound detection; 
sound source localization; digital-positioning system; smart home 
 

I.  INTRODUCTION 
A home-based digital device combines projection, vision, 

and audio technologies to redefine the home digital experience 
by connecting to the home network and providing access to 
information, entertainment, and communication. 

Audio gestures produce the sounds, or fast transient-sounds 
by hand clap, finger snap, tap using knuckle tips at wall or 
table, tap flats at wall or table, finger flats at wall or table, 
palm to wall or table, fingertip with nails at wall or table, 
fingertip without nails at wall or table, etc.. The home-based 
digital device is equipped with multiple microphones (say, 4 or 
8 microphones). By using the corresponding audio gestures 
which are the user’s events of interest, the user tells the digital 
device where the user wants to display. For the above events of 
interest where the fast transient-sounds or impulse signals are 
produced, the digital device needs to detect, locate these 
events, and position the display towards the desired location of 
the events, so as to present a menu of options on user’s hand. 
Therefore, accurate detection of the desired fast transient-
sound is the key component in such a kind of digital devices. 

In order to prevent the digital device from positioning the 
built-in projection misleading by single accident undesired 
audio gesture, the double-audio gesture is proposed for the 
control mechanism. In other words, the double-audio gesture is 
used to define the user’s events of interest, such as double 

knuckle to wall or table, double palm to wall or table, double 
fingertip to wall or table, double hand clap, etc.. 

In practice, various environmental noises and interferences 
can greatly degrade the fast transient-sound detection (FTSD) 
accuracy and sound source localization performance. These 
noises and interferences include but not limited to fan noise, 
speakers’ voice, laughing sounds, and the noise of the built-in 
motor incurred when the digital device moves or rotates. In 
addition, other impulse interference signals, such as door 
shutting and cup dropping on the floor can misguide the digital 
device to position the display. 

 Although some FTSD algorithms including double fast 
transient-sounds detection (DFTSD) have been proposed [1-3], 
these existing algorithms have significant drawbacks mainly 
because of the very expensive computational complexity, long 
latency, not robust to noise, voice, and laughing sounds. 
Moreover, as shown in Section 5, the design of these existing 
FTSD algorithms is independent from the training for the false 
positive and false negative performance, which in turn cannot 
maximize the detection performance and sound source 
localization performance. The above problems prevent these 
existing FTSD and DFTSD algorithms from practical use and 
being accepted by the users. It is the goal for this paper to 
propose a new FTSD algorithm that overcomes the above 
drawbacks so as to achieve the optimum processing 
performance. The proposed FTSD algorithm has been trained 
and verified by a large database on Amazon machine learning 
platform. 

More specifically, the proposed multirate FTSD scheme 
firstly performs the detection processing by extracting the key 
features including dynamics and periodicity on the basis of the 
emerging microphone array configuration. Secondly, an 
effective and robust positioning system is established by 
making full use of the proposed FTSD algorithm and its 
generalization to DFTSD. The given theoretical analyses and 
objective test results show that the proposed system can offer a 
significant improvement for FTSD, DFTSD, sound source 
localization, and positioning performance in smart home 
devices. 

It is worth mentioning that the artificial intelligent speakers 
which include the built-in screens can benefit from the 
proposed FTSD algorithm as well. The screens of these 
artificial intelligent devices can be automatically adjusted 
towards the location of the fast transient-sound events of 
interest. 

The rest of this paper is organized into the following five 
sections. Section 2 mainly presents the proposed signal 
processing architecture of the digital-positioning system in 
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smart home. Section 3 is devoted to the details of the proposed 
algorithm of robust multirate FTSD. In Section 4, a sound 
source positioning system is provided by employing the 
proposed FTSD and sound source localization. By conducting 
various testing, Section 5 mainly presents various test results to 
show that the smart home device implemented with the 
proposed FTSD algorithm can have significant improvements 
in terms of FTSD, DFTSD, sound source localization, and 
positioning performance. Section 6 will make some 
conclusions and further discussions. 
 

II. THE ARCHIECTURE OF THE PROPOSED SYSTEM   
Fig. 1 shows the signal processing architecture of a digital-

positioning system in smart home by using the proposed 
scheme. 

 

Fig. 1. Architecture of the Proposed Digital-Positioning System 

In Fig. 1, HPF, AEC, RES, NR, SSL, SRC, AVC, and EQ 
denote for high-pass filter, acoustic echo cancellation, residual 
echo suppression, noise reduction, sound source localization, 
sampling rate convertor, automatic volume control, and 
speaker equalizer, respectively. The algorithms of HPF, AEC, 
RES, NR, and SRC have been described in [4]. The algorithms 
of Limiter and EQ have been described in [5]. 

The proposed system generates the (x, y, z) location of 
transient-sound events of interest, which means that the block 
“Projector Driver” in Fig. 1 can guide and position the display 
towards the location of the events. 
 

III. THE DETAILS OF THE PROPOSED FTSD ALGORITHM 

A. The Basis of the Proposed Detection Algorithm 
The fast transient-sound is typically instantaneous sharp 

(i.e., large dynamics, short-duration) and non-periodic. 
Through extensive analyses of the characteristics of the fast 
transient-sound, a multirate detection scheme is proposed and 
shown in Fig. 2. 
 

 
Fig. 2. The Processing Blcoks of the Proposed Detection Algorithm 

This is a frame-by-frame time domain processing. For the 
sake of the fast processing, the frame length could be short, 
such as 16 ms. Since this is feature extraction-based approach, 
the processing is not sensitive to the signal level. The output of 

this detection processing is a decision of a value of either True 
or False. 

In Fig. 2, the input signal m(n) of sampling rate fs1 (ranging 
from 96 kHz to 32 kHz) is down-sampled to x(n) of sampling 
rate fs2 (say, 16 kHz). The down-sampled signal x(n) is 
processed by the block “Linear Prediction 1”. The linear 
prediction representation is described as 

𝑦(𝑛) =&𝑎(𝑥(𝑛 − 𝑖)																																												(1)
.

(/0

 

where y(n) is the predicted signal, ai are predictor coefficients. 
Levinson-Durbin recursion algorithm can be used to obtain the 
coefficients ai. The parameter p could be any number around 
10. The variable e(n) is a linear prediction error generated by 
the following equation 

𝑒(𝑛) = 	𝑥(𝑛) − 𝑦(𝑛)																																														(2) 
The block “Analysis of Dynamics” in Fig. 2 is a very 

important part of the proposed solution in this paper and is 
shown in more details by Fig. 3. 

 
Fig. 3. The Proposed Dynamics Analyzer 

In Fig. 3, the “Envelope Estimation” block is implemented 
as follows. 

𝑒𝑛𝑣(𝑛) = 𝑒𝑛𝑣(𝑛 − 1) + 𝛽6|𝑒(𝑛)| − 𝑒𝑛𝑣(𝑛 − 1)8							(3) 

where β is a smoothing factor between 0.0 and 1.0. The “Floor 
Estimation” block is implemented as follows. 

𝑓𝑙𝑟(𝑛) = 𝑓𝑙𝑟(𝑛 − 1) + 𝛾6𝑒𝑛𝑣(𝑛) − 𝑓𝑙𝑟(𝑛 − 1)8								(4) 

where γ is a smoothing factor between 0.0 and 1.0. 

The block “Downsampling 2” converting from x(n) to z(n) 
in Fig. 2 could be of the 8:1 ratio so that the z(n) is of sampling 
rate fs3 = fs2/8 = 2 kHz. Therefore, the computational 
complexity can be greatly reduced. The block “Linear 
Prediction 2” can have small order p (say, p = 4). 

The block “Analysis of Periodicity” in Fig. 2 is 
implemented by the autocorrelation approach. The 
autocorrelation function of a discrete-time signal is defined as 
follows. 

𝑅(𝑘) = & 𝑣(𝑚)𝑣(𝑚 + 𝑘)																																	(5)
C

D/EC

 

If digital signal {v(m)} is of period P with zero mean, then 
its autocorrelation is periodic as well, i.e., R(k) = R(k+P). A 
short-time autocorrelation function of a sequence is more 
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useful and can be defined as Eq. (6) shows, where the final 
subscript is understood to be taken modulo M. 

 

𝜌( = & 𝑣(𝑗)𝑣(𝑗 + 𝑖)																																									(6)
IE0

J/K

 

The output of the “Analysis of Periodicity” block would be 
True if v(n) is periodic, or False if v(n) is non-periodic. Please 
note that signals m(n), x(n), z(n), and v(n) have the same 
periodicity. 

The block “Fast Transient Determination” in Fig. 2 
includes the following implementation steps: 

(1). If e(n) is of large dynamics and v(n) is not periodic, then 
m(n) is determined as the transient sound in the current frame 
which means that this FTSD block outputs True. 

(2). If e(n) is of low dynamics or v(n) is periodic, then m(n) is 
not the transient sound in the current frame, and this FTSD 
block outputs False.  

In addition, the microphone array can provide us with 
spatial information of the fast transient-sound. Any of the N-
channel signals can be selected as the m(n) signal in Fig. 2. If 
the computational complexity budget allows, each channel 
signal can be applied by the proposed FTSD processing, so that 
N decisions can be obtained. The final decision of FTSD can 
be voted, as shown in Fig. 4, on the basis of the obtained N 
decisions. 

 
Fig. 4. The Final Determination of FTSD with Microphone Array 

The number of microphones, N, should be no less than 2. 
There is no limitation for the configuration of the N 
microphones in the proposed FTSD algorithm. All the N-
channel signals m(1, n) through m(N, n) have the same 
sampling rate fs1 which can range from 96 kHz to 32 kHz. It 
should be noted that the smaller is the fs1, the computational 
complexity is the less. 
 

B. The Generalization to DFTSD Algorithm 
Through extensive analyses of their spatial properties of N-

channel signals, the above algorithm can be generalized to 
perform a DFTSD with adding the block “Spatial Analysis and 
DFTS Determination” as shown in Fig. 5. 

In Fig. 5, the block “Spatial Analysis” is to calculate the 
time delay estimation (TDE) among the N-channel signals. To 
achieve a more accurate detection, the linear prediction error 
e(i, n) (i = 1, …, N) signals are chosen to be the inputs of block 
“Spatial Analysis”. If Channel-1 signal is used as reference, 

there are (N-1) TDE values. The block “DFTS Determination” 
outputs True if all the (N-1) TDE values are between 
Threshold-1 and Threshold-2. Otherwise, it outputs False, 
because the desired double fast transient-sounds should happen 
closely in location and closely over the time. 

 
Fig. 5. The Proposed DFTSD with Microphone Array 

The TDE calculation is based on the cross-correlation 
between Channel-1 signal and Channel-i signal (i = 2, 3, …, N) 
or phase transform approaches. The peak in the cross-
correlation indicates the TDE. This means that the time index 
corresponding to the maximum value of the cross-correlation 
sequence denotes for the Time Delay between Channel-1 and 
Channel-i (i = 2, 3, …, N) signals. A more robust-to-noise 
approach is to use least-mean-square adaptive finite impulse 
response algorithm to adaptively estimate the time delay. The 
peak in the finite impulse response taps indicates the TDE. 

If the computational complexity budget is enough, each 
channel signal can be used as reference, so, there are (N-1) + 
(N-2) + … + 1 = N(N-1)/2 TDE values. The block “DFTS 
Determination” outputs True if all the N(N-1)/2 TDE values 
are between Threshold-1 and Threshold-2. Otherwise, it 
outputs False. 

It should be noted that the related feature parameters, such 
as β, γ, the related thresholds for dynamics and periodicity 
features, Threshold-1, and Threshold-2, are determined in an 
offline mode by tuning and training with a large database on a 
cloud-based Amazon machine learning platform. 
 

IV. THE SOUND SOURCE POSITIONING SYSTEM WITH THE 
PROPOSED DFTSD 

By using the proposed DFTSD, a sound source positioning 
system is proposed and shown in Fig. 6. 

In Fig. 6, the number of microphones N should be no less 
than 4 in order to find the x, y, and z coordinates of the desired 
transient-sound. The major processing steps in Fig. 6 include 
transient-sound detection, delay estimation, localization of the 
detected transient-sound, and determination of the desired 
transient-sound. By using the linear prediction excitation 
signals e(i, n) (1 ≤ i ≤ N) extracted by FTSDs as the inputs of 
the delay estimation and inputs of localization of the detected 
transient-sound, the positioning system is very robust to noise. 
The sound source localization can be performed by the 
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spherical interpolation or Brandstein-Adcock-Silverman 
algorithms. 

 

 
Fig. 6. The Proposed Sound Source Positioning System 

 

V. EVALUATIONS OF THE PROPOSED SYSTEM 
In this section, the evaluation results and test analyses of 

the proposed system in Fig. 6 (including the proposed DFTSD 
in Fig. 5 and FTSD in Fig. 4) will be presented in terms of the 
FTSD and DFTSD performance as well as their false positive 
and false negative values. 

As mentioned in Section III, all the key factor parameters 
in Figs. 4, 5, and 6 are first obtained by a cloud-based Amazon 
machine learning platform. 

 
Fig. 7. An Example of Applying the Proposed FTSD and DFTSD to the 

Noisy Transients, input SNR = 3 dB 

The top plot of Fig. 7 shows the waveform consisting of 
two pairs of clicker’s clicking sounds in noisy environment 
with signal-to-noise ratio (SNR) of 3 dB. The middle and 
bottom plots have shown the outputs of the proposed FTSD 
and DFTSD, respectively. Obviously, the proposed FTSD and 
DFTSD algorithms work perfectly in this example. 

 
Fig. 8. An Example of Applying the Proposed FTSD and DFTSD to various 

Transients and Voice 

The top plot of Fig. 8 shows the waveform consisting of 
voice and ten pairs of fast transient-sounds. The middle and 
bottom plots have shown the outputs of the proposed FTSD 
and DFTSD schemes, respectively, which demonstrates that 
the proposed algorithms are robust to the undesired voice and 
achieve 100% detection accuracy in this example. 

Fig.9 and Fig. 10 compare the false negative and false 
positive results of the proposed DFTSD algorithm with those 
of the existing algorithm for 100 pairs of fast transient-sounds, 
respectively. No bar means 0%. The lower is the bar, the better 
is the detection performance. Test case of “Laughing S.” 
includes one pair of true events and seven pairs of laughing 
sounds and voice signals. 

 
Fig. 9. False Negative of the Proposed DFTSD versus the Existing DFTSD 
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The test cases of Fig. 7 and Fig. 8 are also included in the 
bar of “FanNz, 3 dB SNR” and in the bar of “Handclap, AC” 
in Fig. 9, respectively. 

It can be seen from the first three bars in Fig.9 that the 
existing DFTSD algorithm fails to detect all the double fast 
transient-sounds when environment has fan noise, even when 
the SNR is as high as 13 dB. Instead, the proposed DFTSD 
works perfectly for SNR of 13 dB and 3 dB, and even detects a 
pair of fast transient-sounds in the case of SNR = -7 dB. 
Therefore, the proposed DFTSD algorithm outperforms the 
existing algorithm in different SNR conditions. 

 Moreover, the last eight bars in Fig.9 shows that the 
existing algorithm fails to detect some double fast transient-
sounds while the proposed algorithm correctly detects all the 
double fast transient-sounds. 

  

Fig. 10. False Positive of the Proposed DFTSD versus the Existing DFTSD 

Fig. 10 shows that the existing algorithm falsely determines 
7 pairs of laughing sounds and voice signals as 7 pairs of fast 
transient-sounds in the test case of “Laughing S.”, and hence 
results in a false positive rate as 7/8 = 87.5%, while the 
proposed algorithm has zero false detection under exactly the 
same conditions. 

A comprehensive experiment on the proposed system is 
conducted with 47 pairs of hand-clap, 6 pairs of tap, and 1 pair 
of clicker’s clicking, i.e., total 54 pairs of fast transient-sounds. 
Table I provides the real-time test results. 

TABLE I.  PERCENT OF FALSE POSITIVE AND FALSE NEGATIVE 

 False Positive False Negative 
The Proposed DFTD Alg. 1.85% 1.85% 

The Existing DFTD Alg. 16.67% 44.44% 

 

This suggests that the proposed DFTSD algorithm outperforms 
the existing DFTSD algorithm through having a much lower 
false positive rate and false negative rate. 
 

VI. SUMMARY 
As pointed out in Section 1, the existing FTSD algorithm 

only focuses on the basic features, such as energy, width of the 
pulse, energy ratio between two consecutive fast transient-
sounds, etc.. Therefore, a major lacking is the robustness to 
various noises, the unrelated voices and transient-sounds. In 
addition, the existing FTSD algorithm is very expensive in 
terms of latency and computational complexity. Its design is 
independent from the training for the false positive and false 
negative performance, which in turn cannot maximize the 
detection performance. 

This paper presents a new multirate FTSD algorithm by 
extracting the key features including dynamics and periodicity 
on the basis of the emerging microphone array configuration. 
The proposed FTSD algorithm has been trained and verified by 
a large database on Amazon machine learning platform. By 
using multirate approach, the proposed FTSD algorithm and its 
generalized version for DFTSD not only deliver a better 
detection performance but also consume much less MIPS and 
latency than the existing algorithms. Moreover, an effective 
and robust positioning system is established by making use of 
the proposed FTSD and DFTSD algorithms. The given 
theoretical analyses and objective test results show that the 
proposed system can offer a significant improvement for 
FTSD, DFTSD, sound source localization, and positioning 
performance in smart home devices. All of the above shows 
that the proposed algorithm can serve as a much more practical 
solution for the digital smart home related applications. 
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