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Abstract— Recent studies have demonstrated deep 
learning approaches directly from raw data have been 
successfully used in image and text. This approach has been 
applied to audio signals as well but not fully explored yet. In 
this works, we propose a convolutional recurrent neural 
network that directly uses time-domain waveforms as input 
in the domain of urban sound classification. Convolutional 
recurrent neural network is combined model of 
convolutional neural networks for extracting sound features 
and recurrent neural networks for temporal aggregation of 
the extracted features. The method was evaluated using the 
UrbanSound8k dataset, the largest public dataset of urban 
environmental sound sources available for research. The 
results show how convolutional recurrent neural network 
with raw waveforms improve the accuracy in urban sound 
classification and provide effectiveness of its structure with 
respect to the number of parameters. 

I. INTRODUCTION  
The environmental sound has been a significant role in 

understanding the content of multimedia. With such an 
importance and a growing demand, characterizing 
environmental sound is the efficient way to use it. 
Therefore, environmental sound classification (ESC) has 
been an increasingly popular problem in audio recognition 
research. The applications of ESC range from audio scenes 
classification [1] and audio surveillance system [2, 3, 4] to 
multimedia content highlight extraction [5, 6].  Importantly, 
it also has potential to improve the quality of life of city by 
reducing noise with smart multimedia sensor networks [7, 
8].  

In music information retrieval (MIR), researchers have 
traditionally converted raw waveforms of sound signal to a 
2-dimensional time-frequency representation. 2D 
representations have been considered an effective form of 
audio data by decomposing the signal with kernels (e.g., 
STFT) and using log-scaled representations in frequency 
(e.g., Mel-spectrogram, CQT). In early ESC works, both 
the signal processing and machine learning approaches 
including matrix factorization [9, 10, 11, 12], dictionary 
learning [13, 14], wavelet filterbanks [15, 16] and the 
cepstral-based features, such as gammatone cepstral 
coefficients (GTCC) [5, 17] are typically used. This 

process so-called “engineered features” requires significant 
engineering effort and considerable prior knowledge about 
the problem. In addition, feature engineering is often 
heuristically designed and might not be optimal for the 
task. 

Recent advances in deep neural networks have 
encouraged feature learning which takes raw audio signals, 
thereby minimizing the effort of preprocessing the input 
data. Feature learning with raw data was attempted to 
solve a music auto-tagging task by using a convolution 
neural network (CNN) model [18]. The CNN model with 
time-domain waveforms has been applied to recognize a 
variety of speech domains [19, 20, 21]. For the ESC task, 
end-to-end environmental sound classification systems 
with a CNN have proposed [22]. They show that an end-
to-end system is capable of extracting features from the 
raw waveforms. Convolutional Restricted Boltzmann 
machine (ConvRMB) also have been used as the 
unsupervised filterbank learning from the raw audio 
signals [23].  

They provide results comparable to models using 
conventional engineered features such as mel-frequency 
spectrogram. These works, however, have failed to 
outperform the model with conventional features since 
most neural networks considered are not deep enough to 
learn the complex structure of sound sufficiently. The issue 
can be solved by modeling CNNs with very deep 
architectures [24]. The authors of this work built very deep 
networks with up to 34 weight layers, however, the 
performance was improved with depth up to 18 layers due 
to overfitting.  

This issue can be solved by combining CNN with 
Recurrent neural network (RNN) which are called 
Convolutional recurrent neural network (CRNN). The 
CRNN architectures can be described as a modified CNN 
by replacing the last layers with an RNN layer. In CRNN, 
CNNs are able to extract high level features that are 
invariant local variations. RNNs enables the networks to 
take temporal aggregation of extracted features. CRNN 
have shown excellent performance in [25] for document 
classification and extended to use bird audio detection [26] 
and music emotion recognition [27].  

In this paper, we introduce CRNNs for environmental 
sound classification, directly using raw waveform data as 
the input. We compare our method with earlier works 
done by CNNs and deep convolutional neural networks 
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 Fig. 1. Proposed method of convolutional recurrent neural network for 
urban environmental sound classification. The input waveforms are 
represented by a single channel.  In convolutional layer, the different 
number of filters is used and we change the number of layers of each 
filter to make appropriate results.  
 
(DCNNs). In comparison, all the layers are identically 
applied with batch normalization [28] to improve the 
performances. CRNN has weak dropout (0.1) layer to 
prevent overfitting of the RNN layers [29]. The results 
show that CRNNs improve the performance 7.38% in 
absolute accuracy and are more efficient with respect to 
computation cost. 

II. METHOD 
Figure 1 illustrates the architectures of our method in 

ESC task. In this section, we describe the key design 
elements in detail. 

A. Raw Waveforms 
In a sound classification task, the input size has a 

significant effect on the model performance. Our 
architecture takes time-series waveforms as input. Time-
series waveforms have a very large number of features 
along a single channel. This means that raw waveforms are 
required to be sub-sampling for computation issue. To sub-
sampling the raw waveforms, one-dimensional strided 
convolution and pooling layer are often used to make 
feature map, e.g., in music tagging [18, 30]. For the 
pooling layer, max-pooling is used for sub-sampling to add 
time-invariance and the performance is superior to the 
stride sub-sampling method [31]. In addition, audio 
sampling rate has significantly effect on the size of the 
input. In this model, we choose sampling rate at 8kHz and 
filter size of 80 to cover a 10-millisecond duration, thus the 
output has similar dimensions of popularly used in mel-

spectrogram. In [24], the results have shown that a much 
smaller or larger kernel size gives poor performance. 

B. Recurrent Neural Network 
Since our model makes use of sequential information 

which the output is dependent on the previous 
computations, we need to capture the information about 
what has been calculated. RNN is suitable for deal with 
sequential information such as music and audio. Since 
adopting RNN enables the architecture to take the output 
data of previous layer into account, we have more 
flexibility to classify sound. In Figure 2, we show a basic 
RNN network and being unfolded into a full network with 
respect to the number of outputs. Since our problem is 
urban sound classification which yields only one output 
prediction, we use many-to-one models as illustrated in 
Figure 2 (b). Among various kinds of model of RNN, we 
choose long-short term memory (LSTM) model in our 
architectures. LSTM networks are widely used in deep 
learning with sequential data. The memory in LSTMs is 
called the hidden state that is calculated based on the 
previous hidden state the current input. It turns out that 
these types of units are very efficient at capturing long-
term dependencies. In our method, we use two LSTM 
layers, which the last hidden state is connected to the dense 
layer of the network. 

C. Batch Normalization 
Batch Normalization (BN) is a frequently used 

technique for improving the performance of neural 
networks [28]. It reduces the problem of vanishing and 
exploding gradients and overfitting, a common issue in 
training neural networks. During training, each batch of the 
activations of the previous layer is normalized to the mean 
close to 0 and standard deviation close to 1. Using BN 
encourages networks to use less dropout in training, which 
makes networks maintain training data and higher learning 
rates. It is important to increase the speed at which 
networks train. In our model, BN is added on the output of 
each convolution layer before applying activation function 
(ReLU). 

D. Output Layers 
Dense layers are frequently used in the output layer. 

Dense layers perform classification on the features 
extracted by, in this case, recurrent layers.  In a dense layer, 
the number of nodes is set to the number of classes in the 
problem. Every node in the layer is connected to the node 
that represents a probability for each sound class. To set 
the probability value between 0 and 1 and sum of the 
probability equal to 1, a softmax activation function is 
widely used with dense layers. 

Using these elements mainly, we construct CRNN 
models with raw sound signal as the input. All the layers in 
CRNN are convolutional and fully-connected with 
rectified linear unit (ReLU) activation and the BN [28] for 
the CNN layer. In RNN layer, LSTM is utilized to learn 
the temporal information in the features. Lastly, dense 
layers with softmax activation is added to get the 
probability for each sound class. 
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Fig. 2. Illustrations of a recurrent layer as (a) is folded and (b) is unfolded. The main feature of recurrent layer is its hidden state, which captures some 
information about a sequence. S is the hidden state at time step t. S at current time t is calculated based on the previous hidden state and the input at the 
current step. The function applied to sum of previous hidden state and the input at current step is usually a nonlinearity such as tanh or ReLU. The first 
hidden state is typically initialized to all zeroes. The number of outputs is varied depending on the task. In our experiment, when classifying the urban 
environmental sound, (c) is used to yield only one output prediction at the final time step. 
 

III. EXPERIMENTS

A. Dataset 
For the evaluation of our method, we use 

UrbanSound8k dataset [32]. The dataset consists of 10 
environmental sounds from urban area such as air 
conditioner, car horn, children playing, dog bark, drilling, 
engine idling, gun shot, jackhammer, siren and street 
music. It contains 8732 labeled sound samples excerpts of 
up to 4 seconds duration, 9.7 hours in total. Since the 
sample are recorded in the field, there are often other 
sounds contained in addition to the labeled sound. The 
dataset in UrbanSound8K is pre-sorted into 10 folds 
which ensures sound from the same recording will not be 
used both for training and testing. For every experiment, 
the official fold 10 is used for our test set, and the rest for 
training and validation [13, 24, 33]. The audio signals are 
down-sampled to 8kHz and standardized to 0 mean and 
variance 1 for computational speed. 

B. Optimization 
Table 1 outlines the 4 architectures we consider. The 

architectures are built with Keras [34] and Tensorflow [35]. 
We trim audio signal with sampling rate 8kHz using 
Librosa [36]. The input shape is a 32000 length vector. We 
train the CRNN models using Adam [37] and categorical 
cross-entropy as a loss function. In order to use categorical 
cross-entropy loss, we transform the class labels into 
categorical format that each class is a 10-dimensional 
vector that is all-zeros except for a 1 at the index 
corresponding to the class. In convolutional layer, we use 
Xavier initialization [38] to avoid vanishing and exploding 
gradients. For every convolutional layer, we used batch 
normalization [28] for the same purpose. We applied weak 
dropout of 0.1 to prevent overfitting the RNN and tanh is 
used in RNN as an activation function. The last hidden 
state is connected to the fully-connected layer of the 
network. Softmax activation function is used to get the 
probability for each sound class. 

IV. RESULTS 
We estimated the proposed model with 4 different 

network depth. Our models examined from single-layered 
CNNs to 11 layered in order to analyze the relation 
between the depth of networks and the performance. The  

CRNN2(0.25M) CRNN5(1M) CRNN8(2M) CRNN12(3M) 

Input : 32000x1 time-domain waveform 

C(64, 80/4) C(64, 80/4) C(64, 80/4) C(64, 80/4) 

Max-pooling : 4x1 

C(64, 3) C(64, 3) C(64, 3) C(64, 3) x 2 

Max-pooling : 4x1 

 C(128, 3) C(128, 3) x 2 C(128, 3) x 3 

Max-pooling : 4x1 

C(256, 3) C(256, 3) x 2 C(256, 3) x 3 

Max-pooling : 4x1 

C(512, 3) C(512, 3) x 2 C(512, 3) x 3 

Max-pooling : 4x1 

RNN (128) 

Fully-Connected (activation : softmax) 
Table I. Architectures of proposed convolutional recurrent neural network 
for time-domain waveform inputs. The number next to CRNN denotes the 
number of convolutional layers and parameters. Capital letter C represents 
convolution layer. In convolutional layer, the number in parentheses 
denotes the number of filters, kernel size and stride. In RNN, the number 
denotes dimensionality of the output space. 2-layer RNN with LSTM is 
used in our model. Stride is omitted for stride 1. The number multiplied to 
parentheses is the number of stacked layers. In LSTM, we use dropout of 
0.1 these architectures. 

 

Model Test Number of parameters 

CRNN2 67.41% 0.25M 

CRNN5 73.92% 1M 

CRNN8 79.06% 2M 

CRNN12 68.07% 3M 
Table II. Classification test accuracies for models on UrbanSound8k 
dataset. 
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Method Test Number of parameters 

CRNN8 (proposed) 79.06% 2M 

Wei et al. [24] 71.68% 3.7M 
Table III. Comparison of classification accuracies and the number of 
parameters for models of UrbanSound8k dataset. 

 
number of parameters which is closely related to the 
training time was also considered. 

In Table 2, we showed the test accuracies for our 
models depending on the number of convolutional layers. 
The performance of CRNN2 was very poor compared with 
other models. It indicates that 2-layered model has limited 
to extract discriminative features from raw waveforms. We 
further investigated the performance of CRNN by 
constructing deeper networks. The test accuracy improved 
as the network depth was increased for CRNN5, CRNN8. 
The best result was obtained when the number of 
convolutional layers was 8. The performance achieved the 
accuracy of 79.06% in CRNN8 that was competitive with 
the previous state-of-the-art result on UrbanSound8k. Fig. 
3 showed the confusion matrix across the different classes 
using CRNN8. The highest confusion occurred across 
siren, street music, and children playing since the high 
similarity of tonal components. Interestingly, the 
performance improved up to model CRNN8, at 79.06% 
accuracy, whereas CRNN12 which the number of 
convolutional layers was 12 only achieves 68.07%. This 
was due to overfitting caused by deeper networks. We 
considered that dataset was not sufficient to train deeper 
network without additional regularization. 

In Table 3, we compared the performance of the 
proposed method to previous state-of-the-art on 
UrbanSound8k. It represented that our proposed CRNN 
performed significantly better than deep CNN of Wei et al. 
[24] with an absolute improvement of 7.38% in urban 
environmental sound classification accuracy. The 
performance was achieved with even the smaller number 
of parameters, which indicated that CRNN was significant 
advantages in computation than deep CNN structures. 

V. CONCLUSIONS 
In this paper, we propose CRNN model that takes raw 

waveforms as input in environmental sound classification 
(ESC). Through our experiments, we show that raw 
waveform inputs with CRNN are competitive in ESC. 
Adopting RNN which takes global structure into account 
makes more flexible to select the characteristic of sound. 
Our architecture outperforms the deep networks with 12 
weighted layer in [24] which show the state-of-the-art 
performance in urban environmental sound classification 
by 7.38% absolute accuracy and uses significantly less 
amount of parameters. In addition, we can see that raw 
waveform model is reasonable in ESC. Our proposed 
architecture contributes to improving neural networks 
model which take time-series waveforms as input for audio 
classification. 
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