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Abstract—The aim of this paper is to investigate the prop-
erties of octonion Fourier transform (OFT) of octonion-valued
functions of three variables and its potential applications in signal
processing. This work has been inspired by the original papers
by Hahn and Snopek concerning octonion Fourier transform
definition and its applications in the analysis of the hypercomplex
analytic signals. First, the generalization of the OFT definition to
the octonion-valued functions is provided, and then the octonion
analogues of classical Fourier transform properties are derived,
e.g. argument scaling, modulation and shift theorem. Finally, the
results are illustrated with some examples that indicate possible
applications.

I. INTRODUCTION

The classical signal theory deals with real- or complex-
valued time series (or images). However, in some practical
applications, signals are represented by more abstract struc-
tures, e.g. hypercomplex algebras [10]. Quaternions and octo-
nions deserve special attention in this considerations. Recently,
they drew scientists’ attention due to their numerous appli-
cations [7]. Quaternions are used in two different ways – to
describe a vector-valued signal (with three or four coordinates)
of one variable, i.e.

u(t) = u0(t) + u1(t)i+ u2(t)j+ u3(t)k,

where u0, u1, u2, u3 : R→ R, or to analyse a scalar signal of
two variables, i.e. u : R2 → R. The basic tool in the second
approach is the quaternion Fourier transform (QFT) [2]:

UQFT(f1, f2)

=

∫
R

∫
R
u(t1, t2)e

−2πif1t1e−2πjf2t2 dt1dt2. (I.1)

It allows us (in contrast to the classical 2D Fourier transform)
to analyse two dimensions of the sampling grid independently.
Each time-like dimension can be associated with a different
dimension of the 4D quaternion space, while the complex
transform mixes those two dimensions. This property enables
us to use the Fourier transform in the analysis of some
two-dimensional linear time-invariant systems described by
systems of partial differential equations with constant coeffi-
cients [6]. It also allows us to study some symmetries present
in certain signals (images), which was impossible before [7].

In the last few years some generalizations of the Fourier
transform to the octonion and higher-order algebras appeared
in the literature [8], [11]. The main goal of this paper is further

development of such generalization based on octonions. Anal-
ysis of the current state of knowledge on applications of oc-
tonions in the signal processing shows some areas previously
unexplored or requiring thorough theoretical and experimental
studies.

In our previous investigations [1] we were able to show
that the OFT is well defined (i.e. we proved the inverse
transform theorem) for scalar (real-valued) functions of three
variables. In our research we also derived some properties
of the OFT, analogous to the properties of the classical
(complex) and quaternion Fourier transform, e.g. symmetry
properties (analogue to the Hermitian symmetry properties),
shift theorem, Plancherel and Parseval theorems, and Wiener-
Khintchine theorem. Proofs of those theorems were based on
the previous research of Hahn and Snopek, who used the
fact that real–valued functions can be expressed as a sum of
components of different parity [8].

The paper is organized as follows. In Section II we recall
the octonion algebra, its basic properties, the definition of the
octonion Fourier transform and proof of its well-posedness.
In Sections III and IV we focus on deriving some important
properties of the OFT, e.g. argument scaling, modulation and
shift theorems which lead to some remarks on Parseval and
Plancherel Theorems. The paper is concluded with a short
discussion of the obtained results.

II. BASIC DEFINITIONS

A. The octonion algebra

An octonion o ∈ O can be defined as [3]

o = r0 + r1e1 + . . .+ r7e7, r0, r1, . . . , r7 ∈ R, (II.1)

where e1, . . . , e7 are seven different imaginary units. Rules
of octonion multiplication are presented in Tab. I. Number
r0 ∈ R is called the real part of o (and denoted as Re o)
and the pure imaginary octonion r1e1 + . . . + r7e7 is called
the imaginary part of o (and denoted as Im o). Octonions
form a non-associative and a non-commutative algebra, which
means that in general for o1, o2, o3 ∈ O we have

(o1 · o2) · o3 6= o1 · (o2 · o3), o1 · o2 6= o2 · o1.

However, for any o1, o2 ∈ O we have (o1 · o2)∗ = o∗2 · o∗1,
where ∗ is the octonion conjugate, i.e. o∗ = Re o− Im o. We
also define the octonion module by |o| =

√
o · o∗. What is

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 514



TABLE I
MULTIPLICATION RULES IN OCTONION ALGEBRA.

· 1 e1 e2 e3 e4 e5 e6 e7

1 1 e1 e2 e3 e4 e5 e6 e7
e1 e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 e7 −e6 e5 e4 −e3 −e2 e1 −1

more important, the algebra of octonions is alternative, which
means that for any o1, o2 ∈ O we have

o1 · (o1 · o2) = (o1 · o1) · o2, (o1 · o2) · o2 = o1 · (o2 · o2).

Similarly as for the complex numbers and quaternions, we
define the octonion exponential function as the infinite sum
eo :=

∑∞
k=0

ok

k! . Due to the fact, that octonions are non-
commutative, for any o1, o2 ∈ O we have

eo1+o2 = eo1 · eo2 if and only if o1 · o2 = o2 · o1.

We can also write for any α ∈ R that

cosα =
eµα + e−µα

2
, sinα =

eµα − e−µα

2µ
, (II.2)

and eµα = cosα+µ sinα, where µ is any octonion such that
|µ| = 1 and Reµ = 0. For the clarity of the formulas that
will follow, we introduce the notation:

eαj = eej2πα, j = 1, . . . , 7,

sα = sin(2πα), cα = cos(2πα).

B. The octonion Fourier Transform

This section is devoted to the definition of the octonion
Fourier transform (OFT) of the O-valued function of three
variables. This definition was introduced in [9] and used in
later publications concerning theory of hypercomplex analytic
functions [8–11]. In [1] we proved that the OFT of R-valued
function is well-defined and has some interesting properties
(such as the analogue of the Hermitian symetry), but (to the
best of our knowledge) the general definition for the O-valued
functions has not yet been proved to be correct.

Consider the O-valued function u : R3 → O, i.e.

u(x) = u0(x) + u1(x)e1 + . . .+ u7(x)e7,

where ui : R3 → R, i = 0, 1, . . . , 7, x = (x1, x2, x3). The
octonion Fourier transform of u(x) is defined by

UOFT(f) =

∫
R3

u(x) · e−f1x1

1 · e−f2x2

2 · e−f3x3

4 dx, (II.3)

where f = (f1, f2, f3). Since the octonion algebra is non-
associative it should be noted that the multiplication in the
above integrals is done from left to right. Choice and order
of imaginary units in the exponents is not accidental, as we
explained in [1]. Conditions of existence of the integral (II.3)
are the same as for the classical (complex) Fourier transform

and we will omit the details here. We will focus on the
question of invertibility of the OFT. For the special case of
u : R3 → R we proved the following theorem in [1].

Theorem II.1. Let u : R3 → O be a continuous and square-
integrable function. Then

u(x) =

∫
R3

UOFT(f) · ef3x3

4 · ef2x2

2 · ef1x1

1 df

(where multiplication is performed from left to right).

The result follows from the Fourier Integral Theorem [4].

Theorem II.2. Let u : Rn → R be a continuous and square-
integrable function (in the Lebesgue sense). Then

u(x) =

∫
Rn

∫
Rn

u(y) · e2πi f ·(x−y) dy df ,

where i = e1 is complex imaginary unit, y = (y1, . . . , yn).

Proof of Theorem II.1. We need to prove the following:

u(x) =

∫
R3

∫
R3

u(y) · e−f1y11 · e−f2y22 · e−f3y34

· ef3x3

4 · ef2x2

2 · ef1x1

1 dydf ,

where y = (y1, y2, y3) and multiplication is done from left to
right. Writing u as a sum u = u0 + u1e1 + . . . + u7e7 and
using the distributive law on the set of O we see that the claim
of the theorem is equivalent to the system of equations

u0(x) =

∫
R3

∫
R3

u0(y) · e−f1y11 · e−f2y22 · e−f3y34

· ef3x3

4 · ef2x2

2 · ef1x1

1 dy df , (II.4)

ui(x)ei =

∫
R3

∫
R3

ui(y)ei · e−f1y11 · e−f2y22 · e−f3y34

· ef3x3

4 · ef2x2

2 · ef1x1

1 dy df , (II.5)

where i = 1, . . . , 7.
Proof of (II.4) can be found in [1]. We only need to

prove (II.5). We use the fact that for any imaginary unit ei,
i = 1, . . . , 7, we have((

(ei · e−f1y11 ) · e−f2y22

)
· e−f3y34

)
· ef3x3

4

=
(
(ei · e−f1y11 ) · e−f2y22

)
·
(
e−f3y34 · ef3x3

4

)
, (II.6)(

(ei · e−f1y11 ) · e−f2y22

)
· ef2x2

2

= (ei · e−f1y11 ) · (e−f2y22 · ef2x2

2 ) (II.7)

(ei · e−f1y11 ) · ef1x1

1 = ei · (e−f1y11 · ef1x1

1 ). (II.8)

By following the same steps as in [1] and using for each
i = 1, . . . , 7 equation (II.6), Fubini’s Theorem and Theo-
rem II.2, then (II.7), Fubini’s Theorem and Theorem II.2, and
finally equation (II.8), Fubini’s Theorem and Theorem II.2 we
prove (II.5).

In the remaining part of this paper we will assume that
functions u and v have well-defined and invertible octonion
Fourier transforms which will be denoted by UOFT and VOFT,
respectively. We will also denote FOFT {u} as the OFT of
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function u. Considerations about properties of OFT should
begin with the elementary result – octonion Fourier transofrm
is R-linear operation, i.e. for a, b ∈ R we have

FOFT {a · u+ b · v} = a · FOFT {u}+ b · FOFT {v} .

It should be noted here that OFT is not O-linear, i.e. the
abovementioned formula is not true for every a, b ∈ O.

Octonion Fourier transform can be computed using for-
mula (II.3), however in the case of R- and C-valued functions
we can use classical (complex) Fourier transform. In particular,
the following theorem holds, which is the generalization of the
result of [11], where it was proved for R-valued functions. For
the clarity of the formulas we will use the notation:

fijk = (if1, jf2, kf3),

where i, j, k ∈ {+,−}, e.g. f+−+ = (f1,−f2, f3).

Theorem II.3. Let u : R3 → C, and denote U = FCFT {u},
UOFT = FOFT {u}. Then

UOFT(f)

=
1

4

(
U(f+++) · (1− e3) + U(f+−+) · (1 + e3)

)
· (1− e5)

+
1

4

(
U(f++−) · (1− e3) + U(f+−−) · (1 + e3)

)
· (1 + e5)

where octonion multiplication is done from left to right.

Proof. In this proof we will carefully follow and modify steps
presented in [11]. From the definition of the classical Fourier
transform and equation (II.2) with µ = e1 we get

U(f1, f2, f3) =

∫
R3

u(x)e−f1x1

1 e−f2x2

1 e−f3x3

1 dx.

Then
1

2

(
U(f+++) + U(f+−+)

)
=

∫
R3

u(x)e−f1x1

1 cf2x2e−f3x3

1 dx,

(II.9)
1

2

(
U(f+++)− U(f+−+)

)
=

∫
R3

u(x)e−f1x1

1 (−e1sf2x2)e−f3x3

1 dx. (II.10)

From the fact that for o = r0 + r1e1 we have(
(o · e1) · ef3x3

1

)
· e3 =

(
o · (e1 · e3)

)
· e−f3x3

1

(because the multiplication is alternative) it follows that

1

2

(
U(f++−)− U(f+−−)

)
e3

=

∫
R3

u(x)e−f1x1

1 (e2s
f2x2)e−f3x3

1 dx. (II.11)

Subtracting (II.11) from (II.9) we then obtain

1

2

(
U(f+++) + U(f+−+)

)
+

1

2

(
U(f+−−)− U(f++−)

)
e3

=

∫
R3

u(x)e−f1x1

1 e−f2x2

2 e−f3x3

1 dx =: V (f). (II.12)

By following similar steps applied to function V we get

1

2

(
V (f+++) + V (f++−)

)
+

1

2

(
V (f+−−)− V (f+−+)

)
e5

=

∫
R3

u(x)e−f1x1

1 e−f2x2

2 e−f3x3

4 dx. (II.13)

We conclude the proof by substituting formula (II.12) in (II.13)
and regrouping all terms.

III. PROPERTIES OF THE OCTONION SPECTRUM

Properties of the complex Fourier transform and its quater-
nion counterpart are well known in literature [2], [4]. In this
section we will prove analogues of classical properties such as
argument scaling and modulation theorem. In [1] we already
proved the shift theorem so we will omit the details here. Proof
of the first theorem we present in this section is identical to the
classical case and utilizes integration by substitution, which we
leave to the reader.

Theorem III.1. Let u : R3 → O and U = FOFT {u}.
Moreover, let a, b, c ∈ R \ {0} and function v : R3 → O be
defined by v(x1, x2, x3) = u(x1

a ,
x2

b ,
x3

c ), V = FOFT {v}.
Then

V (f1, f2, f3) = |abc|U(af1, bf2, cf3).

Theorem III.1 can be generalized to all linear maps of x. In
the case of quaternion Fourier transform one can find similar
result in [2] for functions u : R2 → R and v = u(Ax), where
A is a R-valued 2 × 2 matrix such that det(A) 6= 0. In
the octonion setup, considering v(x) = u(Ax), where A
is some arbitrary nonsingular 3 × 3 matrix, we would get
a result containing 64 different terms. Due to the complication
of calculations and slight significance for further research we
skip this formula.

We will now prove a series of theorems, known in system
theory as the modulation theorem. It is worth noticing that
the claim of cosine modulation theorem (i.e. where the carrier
is a cosine function) is exactly the same as in the case of
complex Fourier transform, although for sine carrier function
there are some significant differences. We will use the notation
of central difference with respect to the i-th variable:

δ1,f0U(f) = U(f1 + f0, f2, f3)− U(f1 − f0, f2, f3)

and analogously for δ2,f0U and δ3,f0U .

Theorem III.2. Let u : R3 → O and U = FOFT {u}.
Moreover let f0 ∈ R and denote usin,i(x) = u(x) · sf0xi ,
U sin,i = FOFT

{
usin,i

}
, i = 1, 2, 3. Then

U sin,1(f) = δ1,f0U(f+−−) ·
e1
2
,

U sin,2(f) = δ2,f0U(f++−) ·
e2
2
,

U sin,3(f) = δ3,f0U(f+++) ·
e4
2
.

Proof. We will use the equivalent definition of the sine func-
tion, i.e. equation (II.2) with µ = ej , j = 1, . . . , 7. We will
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also use following properties of octonions. For any o ∈ O and
α1, α2, α3 ∈ R we have((

o · (e−α1
1 · e1)

)
· e−α2

2

)
· e−α3

4

=
((

(o · e−α1
1 ) · eα2

2

)
· eα3

4

)
· e1, (III.1)(

(o · e−α1
1 ) · (e−α2

2 · e2)
)
· e−α3

4

=
((

(o · e−α1
1 ) · e−α2

2

)
· eα3

4

)
· e2, (III.2)(

(o · e−α1
1 ) · e−α2

2

)
· (e−α3

4 · e4)

=
((

(o · e−α1
1 ) · e−α2

2

)
· e−α3

4

)
· e4. (III.3)

Then, for i = 1 we have

U sin,1(f1, f2, f3)

=

∫
R3

u(x)
(
e−f1x1

1 sf0x1
)
e−f2x2

2 e−f3x3

4 dx

= −
∫
R3

u(x)
(
e−f1x1

1 · e1sf0x1 · e1
)
e−f2x2

2 e−f3x3

4 dx

(III.1)
= −1

2

∫
R3

u(x)
(
e−f1x1

1 (ef0x1

1 − e−f0x1

1 )
)

· ef2x2

2 ef3x3

4 dx · e1

= −1

2

∫
R3

u(x)
(
e
−(f1−f0)x1

1 − e
−(f1+f0)x1

1

)
· ef2x2

2 ef3x3

4 dx · e1

=
1

2
· δ1,f0U(f1,−f2,−f3) · e1,

which concludes the proof. For i = 2, 3 the property is proved
analogously, using equations (III.2) and (III.3).

Proof of the following theorem is similar to that of The-
orem III.2 and uses the equivalent definition of the cosine
function, i.e. equation (II.2) with µ = ej , j = 1, . . . , 7. We
will omit the details.

Theorem III.3. Let u : R3 → O and U = FOFT {u}.
Moreover, let f0 ∈ R and denote ucos,i(x) = u(x) · cf0xi ,
U cos,i = FOFT

{
ucos,i

}
, i = 1, 2, 3. Then

U cos,i(f) = δi,f0U(f+++) ·
1

2
, i = 1, 2, 3.

For the completeness of our considerations, we should also
state the shift theorem. As we said earlier, this theorem was
already proved in our earlier work, i.e. article [1], in the case
of the R-valued functions. The proof in the general case is
very straightforward and uses integration by substitution and
equations (III.1)–(III.3). We omit the details here.

Theorem III.4. Let u : R3 → O and U = FOFT {u}. More-
over let α, β, γ ∈ R and denote uα(x) = u(x1 − α, x2, x3),
uβ(x) = u(x1, x2 − β, x3) and uγ(x) = u(x1, x2, x3 − γ).
Let U ` = FOFT

{
u`
}

, ` = α, β, γ. Then

Uα(f) = cf1αU(f+++)− sf1αU(f+−−) · e1,
Uβ(f) = cf2βU(f+++)− sf2βU(f++−) · e2,
Uγ(f) = cf3γU(f+++)− sf3γU(f+++) · e4.

IV. REMARKS ON PARSEVAL-PLANCHEREL THEOREMS

In [1] we proved octonion analogues of Parseval-Plancherel
Theorems for R-valued functions. We will now generalize
some of this results and show that in some cases such gener-
alization is not possible. First, recall the Plancherel Theorem,
as stated in [1].

Theorem IV.1. Let u, v : R3 → R be square-integrable
functions and UOFT = FOFT {u}, VOFT = FOFT {v}. Then

〈u, v〉 = 〈UOFT, VOFT〉 ,

where 〈u, v〉 =
∫
R3 u(x) · v∗(x) dx.

It should be noted that in case of O-valued functions, 〈·, ·〉
does not satisfy the axioms of the scalar product (due to the
non-associativity of octonion multiplication).

The assumption that u and v are R-valued is relevant. For
the O-valued functions the claim of Theorem IV.1 doesn’t
hold, which will be discussed in detail in Remark IV.3. In
case of R-valued functions Theorem IV.2 (known as Rayleigh
Theorem) is direct corollary of Theorem IV.1. However, we
will prove the more general case, for O-valued functions, thus
showing that the OFT preserves the energy of O-valued signal.

Theorem IV.2. L2-norm of any function u : R3 → O (square-
integrable) is equal to the L2-norm of its octonion Fourier
transform UOFT, i.e.

‖u‖L2(R3) = ‖UOFT‖L2(R3) ,

where ‖v‖L2(R3) =
(∫

R3 |v(x)|2 dx
)1/2

for any square-
integrable function v : R3 → O.

Proof. Any function u : R3 → O can be represented as

u(x) = u0(x) + u1(x)e1 + . . .+ u7(x)e7,

where ui : R3 → R, i = 0, 1, . . . , 7.
Then, using the following properties of octonions, i.e.(
(e1 · e−α1

1 ) · e−α2
2

)
· e−α3

4 =
(
(e−α1

1 · eα2
2 ) · eα3

4

)
· e1,(

(e2 · e−α1
1 ) · e−α2

2

)
· e−α3

4 =
(
(eα1

1 · e
−α2
2 ) · eα3

4

)
· e2,(

(e4 · e−α1
1 ) · e−α2

2

)
· e−α3

4 =
(
(eα1

1 · e
α2
2 ) · e−α3

4

)
· e4,(

(ej · e−α1
1 ) · e−α2

2

)
· e−α3

4 =
(
(eα1

1 · e
α2
2 ) · eα3

4

)
· ej

for j ∈ {3, 5, 6, 7}, we can write

UOFT(f1, f2, f3) = U0(f+++) + U1(f+−−)e1

+U2(f−+−)e2 + U3(f−−−)e3 + U4(f−−+)e4

+U5(f−−−)e5 + U6(f−−−)e6 + U7(f−−−)e7,

where U i = FOFT {ui}, i = 0, 1, . . . , 7, are OFTs of R-valued
functions. In [8] it was proved that they can be expressed as
sums of components of different parity, i.e.

U i = Ueee − U ioeee1 − U ieoee2 + U iooee3

− U ieeoe4 + U ioeoe5 + U ieooe6 − U ioooe7, i = 0, . . . , 7,

where U ixyz , x, y, z ∈ {e, o} are components of different parity
as in [1]: e – even, o – odd (with respect to proper variable).
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Since the claim has already been proved in case of R-valued
functions in [1], let us notice that

‖u‖2L2(R3) =
7∑
i=0

‖ui‖2L2(R3) =
7∑
i=0

‖U i‖2L2(R3).

It suffices to prove that ‖UOFT‖2L2(R3) =
∑7
i=0 ‖U i‖2L2(R3). It

can easily be shown that the real part and each of the imaginary
parts of UOFT contains exactly one of the components of
different parity of each function U i, e.g.

Re(UOFT) = U0
eee + U1

oee + U2
eoe − U3

ooe

+ U4
eeo − U5

oeo − U6
eoo + U7

ooo,

where each component is taken in approriate point. Moreover,
each component has different parity, which leads to∫

R3

(Re(UOFT))
2
dx =

∫
R3

(
(U0

eee)
2 + (U1

oee)
2 + (U2

eoe)
2

+ (U3
ooe)

2 + (U4
eeo)

2 + (U5
oeo)

2 + (U6
eoo)

2 + (U7
ooo)

2
)
df .

The above equation follows from the fact that all other
components created as a result of squaring Re(UOFT) are odd
with respect to at least one variable. Similar result will be
obtained for each imaginary part of UOFT. After adding all
integrals and regrouping all terms we get∫

R3

|UOFT|2 dx =
7∑
i=0

∫
R3

(
(U ieee)

2 + (U ioee)
2 + (U ieoe)

2

+ (U iooe)
2 + (U ieeo)

2 + (U ioeo)
2 + (U ieoo)

2 + (U iooo)
2
)
df

=
7∑
i=0

‖U i‖2L2(R3),

which concludes the proof.

Remark IV.3. As we already stated, the claim of Theo-
rem IV.2 is valid for O-valued functions, but Theorem IV.1
is true only for R-valued functions. Consider the following
example. Define two functions:

u(x) =
1

(2π)3/2
exp

{
−1

2

(
x21 + (x2 − 1)2 + (x3 − 1)2

)}
,

v(x) =
e1

(2π)3/2
exp

{
−1

2

(
x21 + (x2 + 1)2 + (x3 + 1)2

)}
,

which have OFT equal to

UOFT(f) = exp
{
−2π2(f21 + f22 + f23 )

}
· (cf2cf3 − sf2cf3e2 − cf2sf3e4 + sf2sf3e5),

VOFT(f) = exp
{
−2π2(f21 + f22 + f23 )

}
· (cf2cf3 − sf2cf3e2 − cf2sf3e4 + sf2sf3e5) · e1

= exp
{
−2π2(f21 + f22 + f23 )

}
· (cf2cf3e1 + sf2cf3e3 + cf2sf3e5 + sf2sf3e7).

Then

〈u, v〉 = −e1 ·
∫
R3

1

(2π)3
exp

{
− 1

2

(
2x21 + (x2 − 1)2

+ (x2 + 1)2 + (x3 − 1)2 + (x3 + 1)2
)}

dx = − e1
8e2π3/2

.

But on the other hand

〈UOFT, VOFT〉 = e1 ·
∫
R3

exp
{
−4π2(f21 + f22 + f23 )

}
·
(
− (cf2cf3)2 + (sf2cf3)2 + (cf2sf3)2 + (sf2sf3)2

)
df

= − e1
8e2π3/2

·
(
1

2
+ e+

e2

2

)
.

This counterexample proves that in general the claim of
Theorem IV.1 is not valid for all u, v : R3 → O.

V. DISCUSSION AND CONCLUSION

We showed that the theory of OFT can be generalized to
the case of functions with hypercomplex values. Their spectra
have properties that are similar to their complex counterparts
and can be applied in the analysis of vector-valued signals of
three (time- or space-like) variables using a true 3D Fourier
Transform that separates all symmetries in its spectrum [1].

Presented results form the foundation of octonion-based
signal and system theory. It remains to study the properties
of the OFT in context of other signal-domain operations,
i.e. derivation and convolution of R-valued functions. There
are known results for quaternion Fourier transform (see [6]),
but they use the notion of other hypercomplex algebra, i.e.
double-complex numbers. Finding similar results for octonion
Fourier transform requires defining other higher-order hyper-
complex structures.
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