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Abstract—In this paper, a two-level iterative weighted least
squares (TIWLS) method is proposed to estimate the voltage
frequency in a balanced three-phase (3PH) power system with
harmonic distortion. The novel TIWLS estimator exploits the
weighted least squares (WLS) technique to reuse the discarded
information of the previous harmonic Aboutanios and Mulgrew
(HAM) algorithm. Consequently, the TIWLS method can reduce
the main estimation error in HAM estimator caused by the
maximum bin search. The entire two-step estimation scheme has
the same order complexity as the fast Fourier transform (FFT)
algorithm, which is computationally efficient. Simulation results
are presented to test the TIWLS algorithm, demonstrating that
the new TIWLS estimator always outperforms HAM method
with less oscillation.

Index Terms—Fundamental frequency estimation, harmonic
distortion, weighted least squares, Fourier interpolation, three-
phase power systems.

I. INTRODUCTION

The voltage frequency is an important parameter for assur-
ing the health of power networks. If the frequency deviates
from the normalized value, the power flows between different
generators and loads are redistributed to protect electronic
equipments and maintain Power Quality (PQ) [1]. Conse-
quently, the development of robust and accurate frequency
estimators in power systems is necessary.

Based on the signal models, the state-of-art estimation
methods in power systems can be categorised into two types:
3PH algorithms, such as augmented complex least mean
squares (ACLMS) [2], total least squares (TLS) [3] and
augmented complex Kalman filters (ACKFs) [4], and single-
phase (1PH) algorithms, such as the zero-crossing method [5].
Since 3PH algorithms use all the information existing in three
dimensions, they are more robust than 1PH methods. However,
the aforementioned estimators only work well in the absence
of harmonics. Due to the increasing use of non-linear loads,
different levels of harmonics are inevitably embedded in the
sampled voltage data. Therefore, algorithms that only consider
the fundamental frequency cannot capture the full information
in the actual power signal.

Using Clarke’s α, β transformation that converts the 3PH
signal model into a 1PH complex signal, popular multi-tone
parametric estimators, such as MUltiple SIgnal Classifica-
tion (MUSIC) [6] and Estimation of Signal Parameters via
Rotational Invariance Techniques (ESPRIT) [7], can obtain
unbiased frequency estimation of the transformed exponential
signal [8]. Yet the performance of these estimators can still
be improved as they fail to exploit the harmonic structure of
the power signals. Thus the improved weighted least squares
(IWLS) algorithm [9], [10] is proposed to act as a further
polishing step to reduce the estimation variance of MUSIC and
ESPRIT estimators. Nevertheless, heavy computational cost
(O(N3)) for ESPRIT or more for MUSIC in order to calculate
a dense spectral grid is the significant drawback of IWLS. On
the other hand, most multi-tone parametric estimators impose
heavy demands, such as numerous sampling points and high
signal to noise ratio (SNR), which also severely limit the
application.

In our previous work, a harmonic A&M (HAM) estimator
[11] was proposed to estimate the voltage frequency by
extending the single-tone frequency estimator proposed by
Aboutanios and Mulgrew [12] (the A&M algorithm). Nev-
ertheless, the major error of the HAM method stems from the
rough estimation of each harmonic waveform at the initialized
step. As a solution, in this paper we put forward a new
two-level iterative weighted least squares (TIWLS) method to
compensate the error caused by the HAM estimator. The new
estimation framework combines the former HAM estimator
and WLS technique to exploit the harmonic structure of the
balanced power signal to yield an excellent performance.

The rest of the paper is organised as follows. We review the
original HAM estimator in Section II. Next in Section III the
novel TIWLS method is developed. The simulation results are
given in Section IV and conclusions are drawn in Section V.

II. HARMONIC A&M ESTIMATOR

In this section, we briefly review the HAM estimator [11].
The harmonically distorted observation model of a balanced
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3PH power signal can be expressed as [1], [13]

va(n) =
K∑
k=1

Vk cos(2πk
f0

fs
n+ kφ) + wa(n),

vb(n) =
K∑
k=1

Vk cos(2πk
f0

fs
n+ kφ− 2π

3
k) + wb(n),

vc(n) =
K∑
k=1

Vk cos(2πk
f0

fs
n+ kφ+

2π

3
k) + wc(n), (1)

where n = 0, 1, . . . , N − 1 is the sampling time index
and Vk is the magnitude of the kth harmonic component.
The fundamental voltage frequency is f0 with fs being the
sampling rate. φ ∈ [0, 2π) is the phase value. The noise terms
{wa(n), wb(n), wc(n)} are assumed to be i.i.d. real Gaussian
noise with zero mean and variance σ2. The 3PH signal model
in (1) can be transformed into a {α, β, 0} reference frame by
an orthogonal transformation matrix as follows v0(n)
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(2) is widely recognised as Clarke’s α, β transformation. In
the balanced case, the direct-axis component vα(n) and the
quadrature-axis component vβ(n) can be further combined to
form a complex harmonic exponential signal x(n),

x(n) = vα(n) + jvβ(n),

=
K∑
k=1

Ake
jlk(2πfn+φ) + w(n), n = 0, . . . , N − 1, (3)

where lk = [(−1)k−1(6k−3)+1]/4. f = f0/fs ∈ [−0.5, 0, 5]
is the normalised frequency and Ak = V|lk|. w(n) are complex
Gaussian noise terms with zero mean and variance 4σ2/3.

The HAM method is summarized in Table I, where we use λ̂
to denote the estimate of λ. The algorithm starts by obtaining
a coarse estimate, f̂ , of the normalised frequency through the
maximum bin, m̂0, of the signal periodogram [14], given by

f̂ =
m̂0

N
, where m̂0 = arg max

m
|X(m)|2, (4)

and X(m) is the N -point fast Fourier transform (FFT) of
x(n). Next, we interpolate two new Fourier coefficients X̃±
at frequencies f̂ ± 0.5/N , which turns out

X̃± =
N−1∑
n=0

x(n)e−j2πn(f̂± 0.5
N ),

= A1e
jφ 1 + ej2πN(f−f̂)

1− ej2π(f−f̂)e∓j
π
N

+

K∑
k=2

Ake
jlkφ

1 + ej2πN(lkf−f̂)

1− ej2π(lkf−f̂)e∓j
π
N

+W±,

= X± +
K∑
k=2

X±,k +W±. (5)

Here W± are the Fourier coefficients of the noise term w(n)
at the interpolation locations and X± are the fundamental
Fourier coefficients. {X±,k}Kk=2 are the later K − 1 harmonic
spectral leakages that can be reconstructed by replacing the
true normalised frequency f with f̂ , given by

X̂±,k = Âke
jlkφ̂

1 + ej2πNf̂(lk−1)

1− ej2πf̂(lk−1)e∓j
π
N

, k = 2, . . . ,K. (6)

In noiseless case, X± in (5) can be recovered by sub-
tracting {X̂±,k}Kk=2 from X̃±. Finally, f̂ can be refined by
={ln(ẑ)}/(2π) + f̂ , where

ẑ =

[
cos

π

N
− j X̂+ + X̂−

X̂+ − X̂−
sin

π

N

]−1

, (7)

and ={•} is the imaginary part of •. On the other hand,
{Ak}Kk=1 and φ can be easily estimated by solving the
following Least Squares (LS) problem:

â = arg min
a
||x− Z(f̂)a||,

= [ZH(f̂)Z(f̂)]−1ZH(f̂)x, (8)

where

a = [A1e
jφ, A2e

jl2φ, · · · , AKejlKφ]T ,

x = [x(0), x(1), · · · , x(N − 1)]T ,

Z(f) = [z1, z2, · · · , zK ],

and

zk = [1, ej2πlkf , · · · , ej2π(N−1)lkf ]T .

The estimated values of amplitudes and the fundamental phase
are given by |â| and ∠â(1) respectively. To further improve
the estimation performance, the refined process is implemented
for Q (Q ≥ 2) iterations.

TABLE I
THE HAM ESTIMATOR [11]

Given A length-N complex harmonic signal x(n);
Calculate X(m) = FFT{x(n)}, m = 0, 1, . . . , N − 1;
Find m̂0 = arg max

m
|X(m)|2;

Initialise f̂ = m̂0
N
, {Âk}Kk=1 = φ̂ = 0 ;

Do For q = 1 to Q, loop:
1. X̃± =

∑N−1
n=0 x(n)e−j2πn(f̂± 0.5

N
) ;

2. X̂±,k = Âke
jlkφ̂ 1+ej2πNf̂(lk−1)

1−ej2πf̂(lk−1)e
∓j π

N
;

3. X̂± = X̃± −
∑K
k=2 X̂±,k ;

4. ẑ =

[
cos
(
π
N

)
− j X̂++X̂−

X̂+−X̂−
sin
(
π
N

)]−1

;

5. f̂ =
={ln(ẑ)}

2π
+ f̂ ;

6. â = [ZH(f̂)Z(f̂)]−1ZH(f̂)x ;
Finally f̂0 = f̂fs, Â1 = |â(1)| and φ̂ = ∠â(1).
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III. THE TWO-LEVEL ITERATIVE WEIGHTED LEAST
SQUARES ESTIMATOR

The main drawback of the HAM estimator is that it is devel-
oped only based on the fundamental frequency f0. Specifically,
the unexpected leakage {Xk,±}Kk=2 in the first iteration is just
roughly estimated by searching the maximum bin of the sig-
nal periodogram. However, discarding the useful information
involved in the latter K − 1 harmonics prevents the algorithm
for achieving the full performance. Consequently, the HAM
estimator requires relatively large amounts of data and high
SNR values to maintain accuracy frequency estimation, which
restricts its application. To solve this problem, a two-level
iterative weighted least squares (TIWLS) estimator is proposed
and summarized in Table II. The modified method combines a
variant HAM estimator with the weighted least squares (WLS)
technique, which makes full use of the information existing in
all harmonics.

Let us start from the K̃th outer loop. In order to ob-
tain the independent frequency estimate of the K̃th har-
monic, a reduced signal xK̃(n) is generated by removing
the previously estimated (K̃ − 1)th harmonic component.
The frequency index set {lk} is also updated by deleting
{l1, l2, . . . , lK̃−1} and normalizing the remaining indices by
lK̃ to give ľp = lk/lK̃ , where k = K̃, K̃ + 1, . . . ,K and
p = 1, . . . ,K − K̃ + 1. Similarly, the updated amplitude
Ǎp and phase φK̃ can form a new complex amplitude vec-
tor aK̃ = [Ǎ1e

jφK̃ , Ǎ2e
jľ2φK̃ , · · · , ǍK−K̃+1e

jľK−K̃+1φK̃ ]T .
Treating the component fK̃ = lK̃f as the “new fundamental
frequency”, the inner loops starts by implementing the HAM
estimator to xK̃(n) for Q (Q ≥ 2) iterations to obtain f̂K̃ .
Combining what we get in the past K̃ − 1 outer loops, the
independently estimated frequency vectors are represented as

f̂ =
[
f̂1, f̂2, · · · , f̂K̃

]T
.

Now, the estimated harmonics can form a “new exponential
signal” v(n), satisfying

v(n) =

K̃∑
k=1

Ake
jlk(2πfn+φ) + w(n), n = 0, . . . , N − 1. (9)

Based on the multiple relation given by the index set {lk},
the estimated fundamental frequency f̂ in last (K̃−1)th outer
loop can be further refined by f̂ . Furthermore, noting that each
harmonic component has a different amplitude and therefore
a different SNR, we combine the estimated frequency vectors

f̂ =
[
f̂1, f̂2, · · · , f̂K̃

]T
by a WLS matrix. The corresponding

cost function is given as

J(η) =‖ f̂ − η ‖2M,

=
[
f̂ − η

]T
M
[
f̂ − η

]
, (10)

where η = [l1f, l2f, · · · , lK̃f ]
T is the vector of true harmonic

frequencies and M is the weighting matrix. In this paper, we
choose the inverse version of harmonic Cramér-Rao Lower
Bound (CRLB) as the weighting matrix to reflect the varying

quality of the elements of f̂ . The final refined frequency f is
given by

f = arg min
f

J(η). (11)

Recall that the signal v(n) in (9) can be rewritten in the
noiseless case as

v = R(θ), (12)

and that v = [v(0), · · · , v(N − 1)]T and R = Dã, where
D = [d1, · · · ,dK̃ ] and dk = [1, ejlk2πf , · · · , ejlk(N−1)2πf ]T .
ã = [A1e

jφ, · · · , AK̃ejlK̃φ]T . Based on Slepian-Bangs for-
mula [15], the weighting matrix M can be calculated as

M = CRB−1(f) =
3

2σ2
<
(
∂RH

∂f

∂R

∂fT

)
, (13)

where <{•} is the real part of • and {•}H is the Hermitian
transpose operator. Based on simple mathematical calculation,
it turns out that

M̂ =
2

σ2
<


y1,1 y1,2 · · · y1,K̃

y2,1 y2,2 · · · , y2,K̃
...

...
. . .

...
yK̃,1 yK̃,2 · · · yK̃,K̃

 , (14)

where

ym,n = ÂmÂne
jφ̂(ln−lm)

[
ej2πf̂(ln−lm) + 22ej4πf̂(ln−lm)

+ · · ·+ (N − 1)2ej2(N−1)πf̂(ln−lm)
]
. (15)

Finally, the refined fundamental frequency f̂ can be obtained
by solving the equation ∂J(η)/∂f = 0, which turns out:

f̂ =

∑Ǩ
u=1 f̂u

∑Ǩ
k=1<{yu,k}lk∑Ǩ

u=1 lu
∑Ǩ
k=1<{yu,k}lk

. (16)

The above process is implemented for K loops after all avail-
able harmonics are exploited, and the estimated parameters
including f̂ , {Â}Kk=1 and φ̂ are renewed at the end of each
outer loop.

IV. SIMULATION

Simulation results are presented in this section to verify the
performance of the proposed TIWLS algorithm.

Firstly, we apply TIWLS estimator to a set of generalised
harmonic signals y(n) for performance demonstration:

y(n) =
K∑
k=1

ej2πkfn

2(k−1)
+ w(n), n = 0, . . . , 63, (17)

where w(n) are complex Gaussian noise terms with zero mean
and variance σ2. f is chosen randomly in [4/64, 5/64] and
SNR is fixed as 10dB. In this case, asymptotic WLS (AWLS)
algorithm [9] is chosen as the contrast method. The root mean
square errors (RMSEs) of f̂ are shown in Fig. 1 with 10,000
Monte Carlo (MC) runs. Here TIWLS is run for 2, 4 and
6 iterations, and HAM is run for 2 and 4 iterations. Note
that AWLS becomes unreliable when the number of harmonic
components in the test signal is larger than 3, whereas the
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TABLE II
THE PROPOSED TIWLS ESTIMATOR

Given A length-N complex harmonic signal x(n);
Initialise x0(n) = x(n), {Âk}Kk=0 = φ̂ = f̂ = l0 = 0;
Loop Outer loop starts. For K̃ = 1 to K, do:

1. xK̃(n) = xK̃−1(n)− ÂK̃−1e
jlK−1(2πf̂n+φ̂);

2. ľp = lk/lK̃ , k = K̃, K̃ + 1, . . . ,K

and p = 1, . . . ,K − K̃ + 1;
3. X(m) = FFT{xK̃(n)}, m = 0, 1, . . . , N − 1;
4. f̂K̃ = m̂0

N
, where m̂0 = arg max

m
|X(m)|2

and {Ǎk}K−K̃+1
k=1 = φ̂K̃ = 0;

5. Inner loop starts. For q = 1 to Q, do:
5.1. X̃± =

∑N−1
n=0 xK̃(n)e−j2πn(f̂

K̃
± 0.5
N

) ;

5.2. X̂±,k = Ǎke
jľkφ̂K̃ 1+e

j2πNf̂
K̃

(ľk−1)

1−ej2πf̂K̃ (ľk−1)
e
∓j π

N

(If K̃ < K) 5.3. X̂± = X̃± −
∑K−K̃+1
k=2 X̂±,k ;

5.4. ẑ =

[
cos
(
π
N

)
− j X̂++X̂−

X̂+−X̂−
sin
(
π
N

)]−1

;

5.5. f̂K̃ =
={ln(ẑ)}

2π
+ f̂K̃ ;

5.6. âK̃ = [ẐH
K̃

(f̂K̃)ẐK̃(f̂K̃)]−1ẐH
K̃

(f̂K̃)xK̃ ;
Inner loop ends;

(If K̃ > 1) 6. f̂ =
∑Ǩ
u=1 f̂u

∑Ǩ
k=1 <{yu,k}lk∑Ǩ

u=1 lu
∑Ǩ
k=1
<{yu,k}lk

;

7. â = [ZH(f̂)Z(f̂)]−1ZH(f̂)x;
Outer loop ends;

Finally f̂0 = f̂fs, Â1 = |â(1)| and φ̂ = ∠â(1).

estimation error of TIWLS and HAM do remain flat. In
addition, TIWLS can always outperform HAM, which meets
the discussion at the beginning of section III. We also see
that TIWLS requires more number of iterations than HAM to
show no improvement, which is due to the fact that SNRs of
high harmonic orders are low. Thus more number of iterations
are needed by the variant HAM of TIWLS to reach best
estimation.

In the second set of simulations, we construct the power
signal based on the Australian standard AS/NZS 61000.2.2
[16] and the power signal model in (1) to test the proposed
TIWLS algorithm. The fundamental frequency f0 is 50Hz and
the sampling frequency fs is 4, 000Hz, which means that there
are 80 samples in a single cycle. The phase φ is chosen as 10◦.
The comparative amplitudes for individual harmonic voltages
in each phase are shown in Table III. Two exponential estima-
tion methods in power systems are chosen as the comparison,
namely subspace [8] and IWLS methods [10]. Figs. 2 to 4
show the RMSEs of f̂0, φ̂ and V̂1 versus SNR obtained by
various methods in balanced 3PH signal model when N = 64.
Here we set Q = 4 for both TIWLS and HAM estimators.
Observe that the RMSEs of TIWLS set on the CRLB at SNR
≥ 0dB. The other methods, on the contrary, exhibit high
SNR thresholds below which the estimates are not reliable.
This is because that the fundamental amplitude is much larger
than that of the other K − 1 harmonics. And subspace and
IWLS depend on all harmonic components, while TIWLS and
HAM start by utilising the Fourier coefficients close to the
fundamental frequency. Furthermore, since TIWLS reuses the

discarded information of HAM, the RMSEs of TIWLS are
lower than that of HAM.

Next, simulations are presented employing a balanced 3PH
power system where the available data points are limited
within one cycle. The SNR is fixed to 60dB and the other
configurations are kept to be the same as the previous test.
In Fig. 5, we find the RMSEs of HAM approaches CRLB
quicker than subspace or IWLS methods, especially when the
data record N is short. Meanwhile, TIWLS converges even
faster than HAM with less estimation bias. In other words, it
means that HAM has a good tracking performance and such
property is further strengthened by TIWLS.

Finally, the frequency tracking performance of TIWLS and
HAM is shown in Fig. 6 for Q = 4, where the signal
frequency is affected by a ±0.5 Hz changing. Since both
TIWLS and HAM are block based algorithm, we introduce a
sliding window with 128 samples and the unknown frequency
is estimated based on this sliding window. Fig. 6 shows that
both TIWLS and HAM can achieve acceptable frequency
estimation. However, there are clear oscillations when using
HAM, which can be reduced in the performance of TIWLS.

TABLE III
THE HARMONIC AMPLITUDES IN EACH 1PH POWER SIGNAL

Order 1 5 7 11 13 17
Amplitude 1 0.06 0.05 0.032 0.03 0.02

2 3 4 5 6 7 8 9
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-75

-70

-65

-60

-55

-50

-45

-40

-35

-30

R
M

S
E

(d
B

)

CRLB

HAM, Q=2

HAM, Q=4

TIWLS, Q=2

TIWLS, Q=4

TIWLS, Q=6

AWLS

6 6.5 7 7.5 8
-78

-76

-74

-72

Fig. 1. RMSEs of f̂ versus the number of harmonic components.
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Fig. 2. RMSEs of f̂0 versus SNR with 10,000 MC runs.
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Fig. 6. Frequency tracking performance for σ2 = 10−6.

V. CONCLUSION

A TIWLS estimator is developed in this paper to estimate
the fundamental voltage frequency in balanced 3PH power
systems with harmonic distortion. We begin by estimating
all harmonic frequencies separately. Then a refinement is
performed to combine the resulting independent harmonic
frequency estimates by the CRLB based weighting matrix.
The TIWLS method can eliminate the estimation errors caused
by interfering harmonics to yield an excellent performance.
Meanwhile, the two-level Iterative scheme has the same order
complexity as the FFT algorithm, which is computationally
efficient. Simulation results show that the proposed TIWLS
estimator can obtain better performance than the former HAM
method.
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