
Feature Fusion via Tensor Network Summation
Giuseppe G. Calvi, Ilia Kisil, Danilo P. Mandic

Department of Electrical and Electronic Engineering
Imperial College London, UK

{giuseppe.calvi15, i.kisil15, d.mandic}@imperial.ac.uk

Abstract—Tensor networks (TNs) have been earning con-
siderable attention as multiway data analysis tools owing to
their ability to tackle the curse of dimensionality through the
representation of large-scale tensors via smaller-scale intercon-
nections of their intrinsic features. However, despite the obvious
benefits, the current treatment of TNs as stand-alone entities
does not take full advantage of their underlying structure and
the associated feature localization. To this end, we exploit the
analogy with feature fusion to propose a rigorous framework
for the combination of TNs, with a particular focus on their
summation as a natural way of their combination. The proposed
framework is shown to allow for feature combination of any
number of tensors, as long as their TN representation topologies
are isomorphic. Simulations involving multi-class classification of
an image dataset show the benefits of the proposed framework.

Index Terms—Sum of tensor networks, Tucker decomposition,
classification, feature fusion, graphs

I. INTRODUCTION

Tensors are multidimensional generalizations of matrices
and vectors, and their ability to make efficient use of the
inherent structure in multidimensional data in order to perform
dimensionality reduction and component extraction makes
them a powerful tool in the analysis of Big Data. Owing to
their flexibility and a scalable way in which they deal with
multi-way data, tensors have found application in a wide range
of disciplines, from very theoretical ones, such as physics
and numerical analysis [1, 2], to the more practically relevant
signal processing applications [3, 4].

The sheer high dimensionality of tensors means that the
application of standard numerical methods may be intractable,
as in the raw tensor format the required storage memory and
number of operations in their manipulation grow exponentially
with the tensor order (curse of dimensionality) [5]. To over-
come this issue, tensor decompositions (TDs) aim to represent
tensors in an approximate but much more efficient way through
multilinear operations over the latent factors. The most well-
known TD approaches are the Canonical Polyadic [6], the
Tucker [7], and the Tensor Train decompositions [5] (CPD,
TKD, and TT respectively).

Any TD can be considered as a special case of the more
general concept of a tensor network (TN), which represents a
high order tensor as a set of sparsely interconnected small scale
core tensors and the associated factor matrices [4]. In other
words, TNs can be viewed as multi-core interconnections of
features of the original tensor. The advantages of representing
a tensor as a TN are: (i) TNs are perfectly suited to deal with
the curse of dimensionality, as a high order tensor, represented

as a TN, can be stored on different machines which deal with
only the individual cores, (ii) each core may be representative
of a specific characteristic of the underlying tensor, thus
implying inherent feature extraction from the original data.
Despite these advantages, open problems in practical design of
TNs include: (i) the choice of TD for a particular application,
(ii) minimization of the number of the parameters necessary
for a TN representation [5], and (iii) a rigorous framework to
combine TNs.

In this work, we address issue (iii), and introduce a TN
summation operator for TNs of the same topology. Summation
is the most natural way to reduce the number of entities, and
we show that a sum of multiple tensors (summands), in their
TN format, preserves their underlying structure. In this way,
the sum of TNs yields another isomorphic TN, the cores of
which are a combination of the corresponding cores of the
summand TNs. We show that in the TN context, the physical
interpretation of summation represents feature fusion of the
original tensors in the raw format, however, algorithms for
tensor network summation are still in their infancy.

To this end, we introduce a framework for the summation
of TNs, achieved by exploiting the block structure of the
corresponding original cores. We illuminate that interconnec-
tions among the cores in a TN describe the coupling of data
structures of the original tensors. This serves as a basis to
explore ways to combine the corresponding individual cores
of two TNs with the same topology in order to obtain a new
TN, the cores of which carry information jointly present in the
individual original cores. This is related to the recently intro-
duced concept of common feature extraction in [8, 9], however,
unlike matrices, the proposed framework enables this operation
on tensors of any order, with the only condition that the
original tensors are represented as isomorphic TNs. Practical
advantages are demonstrated through an image classification
application based on the ETH-80 dataset [10], whereby every
dataset entry is represented as a TN, and their features are
combined via the tensor summation framework. This allows
us to extract relevant shared information in the original data,
which is shown to yield significant advantages in terms of
classification rates when used in conjunction with standard
machine learning classifiers. The proposed framework there-
fore both opens up new perspectives on algebraic manipulation
of TNs, and represents a first step towards establishing their
taxonomy, thus removing the preconception that they have to
be treated as stand-alone entities, together with offering new
avenues for their applications.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2641

II. NOTATION AND BACKGROUND

A tensor of order N is denoted by underlined boldface
uppercase letters, X ∈ RI1×···×IN , a matrix by boldface
uppercase letters, X ∈ RJ×K , a vector by boldface low-
ercase letters, x ∈ RN×1, and a scalar by italic lowercase
letters, x ∈ R. Subscripts are generally described by indices
n, i, j, k. An element in an N -th order tensor is denoted by
xi1,i2,...,iN = X(i1, i2, . . . , iN). For an N -th order tensor
X ∈ RI1×···×In×···×IN and an M -th order tensor Y ∈
RJ1×···×Jm×···×JM , with In = Jm, their (m,n)-contraction
product is given by Z = X×mn Y, where Z is an (N+M−2)-
th order tensor (for more detail we refer to [11, 12]). By
convention ×n is equivalent to ×2

n, and is referred to as mode-
n contraction. The mode-n unfolding of a tensor X rearranges
its elements into a matrix, and is expressed as X(n) (see [11]
for more detail). The symbol ⊗ denotes the Kronecker product,
◦ the outer product, and || · || the Frobenius norm. A TN
representation of a tensor X is denoted by a calligraphic bold
letter, X . Finally, the operator vec(·) designates vectorization
of a tensor. Examples of implementations can be found in
software packages for tensors such as HOTTBOX [13].

A. Tucker Decomposition

The TKD is analogous to a higher order form of matrix
factorization, and decomposes an original tensor X into a core
tensor contracted by a factor matrix along each corresponding
mode [7]. In the case of a 3-rd order tensor X ∈ RI1×I2×I3 ,
the TKD is expressed as

X = G×1 A×2 B×3 C+E

=

Q∑
q

R∑
r

P∑
p

gqrpaq ◦ br ◦ cp +E
(1)

where G ∈ RQ×R×P and A ∈ RI×Q,B ∈ RJ×R, C ∈
RK×P . If {Q,R, P} < {I1, I2, I3}, the TKD is not exact,
and a residual E is present. Analogously, a TKD for an N -th
order tensor is given by

X ≈G×1 A
(1) ×2 A

(2) ×3 · · · ×N A(N) (2)

For convenience, any tensor expressed in this form will be
referred to as “in the TKD format”, even though the factors
A(n) may not be necessarily obtained via a TKD. The mode-n
unfolding of a tensor in the TKD format is given by

X(n) ≈ A(n)G(n)

(
A(N)⊗· · ·⊗A(n−1)⊗A(n+1)⊗· · ·⊗A(1)

)T
(3)

B. Background on Tensor Networks

A decomposition of a tensor into an arrangement of multi-
way linked tensors and matrices leads to expressions which
often involve numerous contraction products; this can be
cumbersome to write and hard to visualize. For this reason,
it is becoming common to represent tensors diagrammatically
[11], as shown in Fig. 1. An N -th order tensor is represented as
a node (circle) with as many edges (modes) as the tensor order.
In TNs, contractions are designated by linking two common

modes, called contraction modes, while “dangling” edges are
physical modes of the represented tensor.

=
x

=
x I

I =
XI J

I

J

=

X

J

I K
I

J
K

Fig. 1: Building blocks of TNs. Anticlockwise from the top-
left: scalar, vector, matrix, and 3-rd order tensor. The edges
are referred to as modes, and the associated labels I, J,K,
indicate their dimensionality.

Two examples of TNs are provided in Fig. 2, whereby any
mode which is not a physical mode is a contraction mode.
Similarly, nodes connected to one or more physical modes are
referred to as physical nodes, while the rest are contraction
nodes. The “shape” of a TN represents its topology, where
the concept of topology is the same as that adopted in Graph
Theory [14].

Remark 1: Each node in a TN, X , can represent either a
particular feature of the original tensor X (in case of physical
nodes), or a model of how features are combined (in case of
contraction nodes).

It is then clear that, a framework for combining TNs is
a prerequisite to mixing features of individual cores, which
would then allow the extraction of the common features across
the individual tensors. Yet, the “feature locality” inherent to
the nodes of a TN is of fundamental importance, but is
still under-explored. Therefore, the main motivation for this
work has been to establish the missing framework for TN
summation via a combination of their corresponding cores,
thus simultaneously performing a feature fusion.

Note: In this work, we refer to any node within a TN as
“core” when treating it as a tensor, while within a topological
context, we use the term “node”.

III. SUM OF TENSOR NETWORKS

To establish a framework for the summation of two or more
TNs, assume that the individual TNs have: (i) physical modes
of equal dimensions, (ii) the same topology. We proceed by
providing relevant definitions, the proposed framework, and
related mathematical formalism.

Definition 1. A block tensor is a tensor that is arranged into
sub-tensors called blocks, that is, its entries are tensors of the
same order but not necessarily of the same dimensionality.

Definition 2. The superdiagonal of a block tensor X ∈
RI1×···×IN is the collection of entries xi1,i2,...,in , where
i1 = i2 = · · · = in.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2642

Fig. 2: Examples of TNs (figure adapted from [11]). Left: A
TN representing a 16-th order tensor, with contraction nodes
shown in blue, and physical nodes shown in green. Right: A
TN representing a 32-th order tensor, with contraction nodes
shown in blue and orange, and physical nodes in green.

Sum of TNs Framework. Consider two tensors X,Y ∈
RI1×···×IN represented as TNs denoted by X and Y which
have equivalent topologies, but not necessarily the same di-
mensionality of contracting modes. The sum Z = X + Y
can then be thought of as a new TN, Z , with an equivalent
topology to X and Y . Its contraction nodes are in the form of
a block tensor which is obtained by stacking the corresponding
contraction nodes of X and Y along its superdiagonal. The
physical nodes of Z are obtained by arranging the corre-
sponding physical nodes of X and Y in such a way that the
dimensionality of all contracting modes is increased but the
dimensionality of the physical modes is kept fixed.

Proposition 1. The proposed framework for a sum of TNs is
valid for chains of matrices.

Proof. Suppose X = A1A2 · · ·AN , Y = B1B2 · · ·BN ,
where X,Y ∈ RI×J , and An,Bn ∈ RRn×Rn+1 , with
R0 = I,RN = J . Define a new chain of matrices Z =
C1C2 · · ·CN , where each Cn, n = 1, . . . , N , is an arrange-
ment of An,Bn according to the proposed framework. By a
direct inspection of Z, we have

Z = C1C2 · · ·CN

=
[
A1 B1

] [A2 0
0 B2

]
· · ·
[
AN−1 0

0 BN−1

] [
AN

BN

]
= A1A2 · · ·An +B1B2 · · ·Bn

= X+Y

(4)

Fig. 3 shows a graphical illustration of Proposition 1.
Remark 2: The above result for matrices is well-known, and

serves here as a specific and straightforward intuition behind
the general concept of TN summation.

Proposition 2. The TN summation operator is valid for any
tensor expressed in the TKD format.

Proof. For simplicity, we here provide proof for 3-rd order
tensors, but without loss of generality the result holds for sum

X
I

A1

R1

A2

R2
· · ·

RN−2

AN−1

RN−1

AN

J

Y
I

B1

L1

B2

L2
· · ·

LN−2

BN−1

LN−1

BN

J

Z
I

C1

R1
+
L1

C2

R2
+
L2

· · ·
RN−2
+

LN−2

CN−1

RN−1
+

LN−1

CN

J

+

=

Fig. 3: Topology preservation for the TN summation operator,
illustrated for a sum of matrices X and Y, expressed as a
matrix chain. The matrices (nodes) Cn are composed of the
matrices An and Bn, which are arranged according to the
sum of TNs framework, either through (i) concatenation or
(ii) block-diagonal arrangement.

of tensors of any order. Fig. 4 shows the tensors X,Y ∈
RI1×I2×I3 in the TKD format, expressed as

X = Gx ×1 Ax ×2 Bx ×3 Cx

Y = Gy ×1 Ay ×2 By ×3 Cy

(5)

with the respective TN representations, X and Y . A new TN,
Z , is then obtained by combining X and Y according to the
proposed framework (see Fig. 4), and the so generated tensor,
Z, can be described by

Z = Gz ×1 Az ×2 Bz ×3 Cz (6)

We next show that Z = X+Y, based on the mode-1 unfolding,
however, note that the same procedure can be applied to any
mode. Define Az =

[
Ax Ay

]
, and Gz as an arrangement

of Gx and Gy along the superdiagonal of Gz , and consider

K1 = (Cx ⊗Bx)
T

K2 = (Cy ⊗By)
T

(7)

Upon performing the mode-1 unfolding of X and Y according
to (3), and combining the matrices X(1),Y(1) in their TN
formats, then from Proposition 1 the resulting matrix, Z∗, can
be expressed as

Z∗ =
[
Ax Ay

] [Gx(1) 0
0 Gy(1)

] [
K1 K2

]T
(8)

Therefore, in order to prove Proposition 2 it is sufficient to
show that Z(1) = Z∗, where Z(1) is the mode-1 unfolding of
Z, represented as in (6). To this end, consider

Z(1) = AzGz(1)(Cz ⊗Bz)
T

=
[
Ax Ay

]
Gz(1)

([
Cx Cy

]
⊗
[
Bx By

])T (9)

For convenience, denote X,Y,Gx,Gy ∈ R2×2×2, and define
Gα(:, :, j) = Ĝα(j), where α ∈ {x, y}. Hence,

Gz(1) =

[
Ĝx(1) 0 Ĝx(2) 0 0 0 0 0

0 0 0 0 0 Ĝy(1) 0 Ĝy(2)

]
(10)

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2643

Without loss of generality, assume the concrete values

Cx =

[
1 2
5 6

]
Cy =

[
3 4
7 8

]
(11)

to give[
Cx Cy

]
⊗
[
Bx By

]
=

=

1 [Bx By

]
2
[
Bx By

]
3
[
Bx By

]
4
[
Bx By

]
5
[
Bx By

]
6
[
Bx By

]
7
[
Bx By

]
8
[
Bx By

]


= U

(12)

Upon substituting Gz(1) and U into (9) and making use of
the sparse nature of (10), we arrive at

Z(1) = AzGz(1)U
T

=
[
Ax Ay

] [Ĝx(1) Ĝx(2) 0 0

0 0 Ĝy(1) Ĝy(2)

]
1BT

x 5BT
x

2BT
x 6BT

x

3BT
y 7BT

y

4BT
y 8BT

y


=
[
Ax Ay

] [Gx(1) 0
0 Gy(1)

] [
KT

1

KT
2

]
=
[
Ax Ay

] [Gx(1) 0
0 Gy(1)

] [
K1 K2

]T
= Z∗ (13)

X

+
R1

R2 R3

I1

I2 I3

Gx

Ax

Bx Cx

Y

=
L1

L2 L3

I1

I2 I3

Gy

Ay

By Cy

Z

R1 + L1

R2 + L2 R3 + L3

I1

I2 I3

Gz

Az

Bz Cz

Fig. 4: Topology of a sum of tensors X and Y in the TKD
format, to give Z = X +Y .

IV. EXPERIMENTAL RESULTS

The TN summation operator was validated through a prac-
tical example of feature fusion in image classification. We
considered the benchmark ETH-80 dataset, which consists of
3280 images, composed of 8 classes, with 10 objects per class
and 41 images per object. For our simulations, the images
were rescaled to 32 × 32 pixels. Given the RGB format of
the considered images, the dataset is conveniently represented
through 3-rd order tensors Xm ∈ R32×32×3,m = 1, . . . ,M
(where M = 3280). Simulations were performed in our
software package for tensors: HOTTBOX [13].

Fig. 5 shows that for each image, Xm, in the training
set, upon performing TKD, the size of the corresponding
core tensors Gm ∈ RR1×R2×R3 was set to R1 = R2 =
R3 = 3. These values were empirically found to offer a
good approximation of the original images, while at the same
time maintaining a small size core tensor. To emphasize the

features of each image without affecting the TKD approxi-
mation, each core tensor Gm was normalized to unit norm
and the factor matrices {Am,Bm,Cm} were scaled by η1/3m ,
where ηm = ||Gm||. Through TN summation, the scaled
factor matrices {Am,Bm,Cm} were concatenated into the
matrices {Ac,Bc,Cc} and the corresponding core tensors into
Gc. Since our goal was to examine the mixture of actual
features, we focused on the factor matrices {Ac,Bc,Cc}, onto
which an SVD was subsequently applied. For dimensionality
reduction, the first {R1, R2, R3} singular vectors were retained
(we refer to this operator as tSVD(·)), to yield matrices
{At,Bt,Ct}. Finally, for each image, Xm, a new core tensor
was computed as

◦
Gm = Xm ×1 A

T
t ×2 B

T
t ×3 C

T
t (14)

The vectorized versions vec(
◦
Gm),m = 1, . . . ,M , were then

fed to standard machine learning classifiers for performance
evaluation. During the testing stage, for each new element X∗,◦
G∗ was computed via (14) using the {At,Bt,Ct} matrices
obtained during training, and subsequently vectorized.

Remark 2: The physical meaning of equation (14) is a
projection of the raw images onto the feature space that
is common to the whole dataset, which greatly reduces the
risk of overfitting, hence ensuring that

◦
Gm can be used for

classification purposes.

Algorithm 1. Sum of TNs for image classification

1: Input: Dataset {Xm}Mm=1, core size {R1, R2, R3}
2:
3: Initialize {Ac,Bc,Cc}
4: for each element m in dataset do
5: Xm = Gm ×1 ×Am ×2 Bm ×3 Cm

6: ηm = ||Gm||
7: Ac =

[
Ac η

1/3
m Am

]
8: Bc =

[
Bc η

1/3
m Bm

]
9: Cc =

[
Cc η

1/3
m Cm

]
10: end for
11: At = tSVD(Ac, R1)
12: Bt = tSVD(Bc, R2)
13: Ct = tSVD(Cc, R3)
14: for each element m in dataset do
15:

◦
Gm = Xm ×1 A

T
t ×2 B

T
t ×3 C

T
t

16: end for
17: Train classifier on {vec(

◦
Gm)}Mm=1.

The procedure outlined in Algorithm 1 was applied to the
ETH-80 dataset by randomly selecting 75% of the available
images to serve as training data. The classifiers used were:
(i) SVM, which employed an RBF kernel and a one-vs-
one approach for multi-class classification, (ii) kNN with the
number of neighbours (Euclidean distance) set to three, (iii)
a Multilayer Perceptron NN (MLP) with two hidden layers
and a ReLU activation function, and (iv) a Random Forest
(RF) with 10 trees, the nodes of which were expanded until

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2644

G′
1

G′
M

A′
MA′

1

B′
1

B′
M

C′
1

C′
M

⇔
3M

3M 3M

32

32 3

Gc

Ac

Bc Cc

Fig. 5: An example of TN summation for the TKD representations of the images in the training set, where {A′m,B′m,C′m} =
η
1/3
m {Am,Bm,Cm} and G′m = Gm/ηm Left: A TKD arrangement of matrices and core tensors. Right: Sum of the Tucker

factors represented in the TN format. Notice that upon TN summation the dimensions of the physical modes remain unchanged.

TABLE I: Classification rates for the ETH-80 dataset, in %.

SVM kNN MLP RF

Original images 89.84% 88.31% 85.43% 83.33%

Tensor stacking 92.94% 88.55% 88.28% 89.75%

Sum of TNs 94.81% 90.51% 89.23% 86.20%

all leaves were pure. Each classifier was trained based on the
data features obtained via the proposed TN summation, as well
as on the original data. For a fair comparison, the features
extracted via another tensor method were also employed,
which involves stacking the images into a higher-order tensor
(see [15] for details), referred to as “tensor stacking”. The
classification rates were computed as an average of 50 real-
izations and the results are summarized in TABLE I. Observe
the benefits of the proposed method for the SVM, kNN and
MLP based classifiers. In particular, with TN summation, the
SVM classifier attained an improvement of about 2% over
tensor stacking, and almost 5% with respect to a direct usage
on the original data.

V. CONCLUSION

We have introduced a mathematical formalism behind the
sum of tensor networks (TNs), and have validated this operator
for both chains of matrices (2-nd order tensors) and for general
tensors in the Tucker format. The TN summation has been
achieved through a block arrangement of the original cores of
two or more TNs, to yield a new TN whereby the features of
the individual summands are embedded in its cores. Through
an analogy with feature fusion, we have proposed a new
algorithm for image classification, which rests solely upon
the proposed sum of TNs. Tests on the ETH-80 dataset have
demonstrated that the mixture of features obtained via tensor
network summation can significantly enhance classification
rates of standard machine learning classifiers.

REFERENCES
[1] T. G. Kolda, “Orthogonal tensor decompositions,” SIAM Journal on

Matrix Analysis and Applications, vol. 23, no. 1, pp. 243–255, 2001.
[2] L. de Lathauwer, B. D. Moor, and J. Vandewalle, “A multilinear

singular value decomposition,” SIAM Journal on Matrix Analysis and
Applications, vol. 21, no. 4, pp. 1253–1278, 2000.

[3] P. Comon, “Tensors: A brief introduction,” IEEE Signal Processing
Magazine, vol. 31, no. 3, pp. 44–53, 2014.

[4] A. Cichocki, D. P. Mandic, A. H. Phan, C. F. Caiafa, G. Zhou, Q. Zhao,
and L. D. Lathauwer, “Tensor decompositions for signal processing
applications,” IEEE Signal Processing Magazine, vol. 32, no. 2, pp.
145–163, 2015.

[5] V. Oseledets, “Tensor-train decomposition,” SIAM Journal on Scientific
Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[6] R. Bro, “PARAFAC. Tutorial and applications,” Chemometrics and
Intelligent Laboratory Systems, vol. 38, no. 2, pp. 149–171, 1997.

[7] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[8] G. Zhou, A. Cichocki, Y. Zhang, and D. Mandic, “Group component
analysis for multiblock data: Common and individual feature extraction,”
IEEE Transactions on Neural Networks and Learning Systems, vol. 27,
no. 11, pp. 2426–2439, 2016.

[9] I. Kisil, G. G. Calvi, and D. P. Mandic, “Common and individual feature
extraction using tensor decompositions: A remedy for the curse of
dimensionality?” in Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2018, p. TBA.

[10] B. Leibe and B. Schiele, “Analyzing appearance and contour based meth-
ods for object categorization,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), vol. 2, 2003, pp.
409–415.

[11] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and D. P.
Mandic, “Tensor networks for dimensionality reduction and large-scale
optimization: Part 1 Low-rank tensor decompositions,” Foundations and
Trends in Machine Learning, vol. 9, no. 4-5, pp. 249–429, 2016.

[12] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama,
and D. P. Mandic, “Tensor networks for dimensionality reduction and
large-scale optimization: Part 2 Applications and future perspectives,”
Foundations and Trends in Machine Learning, vol. 9, no. 6, pp. 431–
673, 2017.

[13] I. Kisil, A. Moniri, G. G. Calvi, B. Scalzo Dees, and
D. P. Mandic, “HOTTBOX: Higher Order Tensor ToolBOX,”
https://github.com/hottbox.

[14] O. Morris, M. Lee, and A. Constantinides, “A unified method for
segmentation and edge detection using graph theory,” in Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), vol. 11, 1986, pp. 2051–2054.

[15] A. H. Phan and A. Cichocki, “Tensor decompositions for feature
extraction and classification of high dimensional datasets,” Nonlinear
theory and its applications, IEICE, vol. 1, no. 1, pp. 37–68, 2010.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2645

