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Abstract—This article gives a detailed analysis of the char-
acteristics of the exact statistic for the optimal noncoherent
signal detection in multi-element antenna arrays. This task is
important for reliable initial detection of User Equipment (UE)
signals coming from an unknown direction in LTE random access
procedure. It is shown that application of the exact statistic is
complex because the thresholds of the Neyman-Pearson (NP)
criterion depend on the SNR. A detailed comparison of the
exact and various approximate decision statistics has been carried
out. The results show that the choice of the statistic can make
noticeable impact on the probability of missed detection for
multi-element antenna array. A new combined decision statistic
has been proposed, whose characteristics are close to the exact
statistic.

Index Terms—noncoherent detection, decision statistics, multi-
element antenna arrays,

I. INTRODUCTION

In this paper, we present a detailed theoretical and numerical
analysis of the characteristics of the exact decision statistic
and its approximations for noncoherent detection of the useful
signal in multi-element antenna arrays. In the past decade, non-
coherent detection schemes have attracted considerable interest
because massive antenna array technologies were introduced
in different wireless communication systems [1]- [2]. Nonco-
herent detection does not require a priori information about
the wavefront of the useful signal in contrast with coherent
detection in which the optimal antenna array radiation pattern
is formed in accordance with the wavefront of the incoming
useful signal. Therefore, the implementation of noncoherent
signal detection scheme needs less a priori information and, it
is commonly used for the initial detection of new unknown
signal sources. For example, different robust noncoherent
detection schemes were investigated with respect to cognitive
radio and satellite broadcasting systems, working in conditions
of a priori uncertainty about signal and interference parameters
[3] - [5].

In the classical works [6]- [8] a Bayesian approach to the
noncoherent detection problem was usually used, where the
conditional likelihood ratio (LR) was averaged over unknown
random parameters of the signal (phases and amplitudes).
However another more complex general method, the so-called
Generalized Likelihood Ratio Test (GLRT), may be also
exploited for detection of the signals with unknown wave-
front spatial characteristics [9]- [11]. In the GLRT approach,

maximum likelihood estimations of the unknown parameters
are inserted in the LR to form a decision statistic.

In the problem statement, considered here, it is assumed
that the phases of the useful signal on the antenna elements
are a priori unknown, and the amplitudes are constant. This
assumption fairly well describes a few important practical
cases of initial detection of signals coming from an unknown
direction, signals having an arbitrary shape of the wavefront,
signals received by a distributed antenna system (D-MIMO)
whose geometry is not precisely known, etc. The considered
case is realized not only for the simple line-of-sight (LOS)
channel but this assumption can also be applied to multipath
channels, if the detection is performed on the base of the
most powerful channel ray. As far as we know, until now
there have been neither an accurate theoretical analysis of the
exact statistic in the considered case nor a detailed comparison
of the exact statistic performance characteristics with the
approximate statistics widely used in practice. That is because,
when the amplitudes of the signals in the antenna array
elements (or pulses in the train in radars) are constant, the use
of the exact statistic is very difficult because it is expressed as
a product of special functions, and its thresholds, even when
using the NP criterion, depend on the SNR value. Therefore, in
all publications on the noncoherent detection problem, known
to the authors, only characteristics of different approximate
decision statistics were investigated.

Unlike in previous works, in this paper we consider the
exact statistic behavior in the observation space of the signals
at the outputs of noncoherent matched filters which provide
the initial signal processing in each element of the antenna
array. The deformation of the multidimensional hypersurface
dividing the observation space into two decision regions is
investigated for the NP criterion depending on the probability
of false alarm and the SNR value.

We present the problem statement in Section II and give a
detailed analysis of performance characteristics of the exact
statistic for noncoherent signal detection in Section III. Next,
approximate desision statistics widely used in practice are
described in Section IV,where the new combined statistic is
also introduced. A comparison of all considered statistics is
done in Section V and in Section VI final conclusions are
made.
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II. PROBLEM STATEMENT

Consider the classical problem of detecting a deterministic
useful signal with unknown parameters by an antenna array
system with M elements. Assume that the useful signal is
narrowband in the sense that the propagation time of the signal
at the aperture of the antenna system is much less than the
duration of one signal symbol. Consider the case when the
useful signal amplitudes at the antenna elements are the same,
but the phases ψm, m = 1, ..., M are random IID values with
uniform probability density function W(ψm).

Following the Bayesian approach [12]- [15], the exact
statistic may be derived by averaging the conditional LR
over the random phases ψ = (ψ1, ψ2, ...ψM )

T . It is assumed
that a complex vector of the received signals in the antenna
elements x[n] = {x1[n], x2[n], ..., xM [n]}T is a discrete-time
(n = 1, ..., N) data set. Then the conditional LR for an M-
element antenna array can be represented in the following form

Λ(x/ψ) =

=

1
πMN σ2MN exp[ 1

σ2
N∑
n=1
(x[n]−s[n,ψ])†(x[n]−s[n,ψ])]

1
πMN σ2MN exp[ 1

σ2
N∑
n=1

x[n]†x[n]]
=

=
M∏
m=1
Λm(xm/ψm),

(1)

where s[n,ψ] = (s1[n, ψ1], s2[n, ψ2], ..., sM [n, ψM ])
T is a com-

plex useful signal vector with phases ψm, σ2 is a variance
of internal Gaussian IID noise in the antenna elements, † is
the transpose conjugate operator. The useful signal in the m-th
antenna element can be represented as

sm[n, ψm] = Aa[n]e jψm, m = 1, ..., M, (2)

where a[n] is a normalized modulation function of the useful
signal and A is the amplitude coefficient characterizing the
energy of the received signal. It is easy to show that the uncon-
ditional (averaged over the random phases) multidimensional
LR can be written as follows:

Λ = Λ(x) =
M∏
m=1

∫
Λm(xm/ψm)W(ψm)dψm

=
M∏
m=1
Λm(xm)

(3)

where the one-dimensional m-th LR is equal to

Λm(xm) = e
− A2

σ2
N∑
n=1

a2[n]
I0(

A
σ2 Ym), Ym = |

N∑
n=1

xm[n]a∗[n]|. (4)

Here I0(z) is the modified Bessel function of zero order of
the argument z, and the Ym are the signals amplitudes in the
outputs of noncoherent matched filters (or of correlators of
the known reference signal a[n] with received signals xm[n]).
Taking into account (3) and (4) the optimal solution of the
noncoherent detection problem [15] is reduced to calculation
of the unconditional LR (Λ-statistic) and comparing it with
the threshold Λth , in accordance with the given optimality
criterion:

Λ(x) =
M∏
m=1
Λm(xm) = e−

A2M
σ2

M∏
m=1

I0(
A
σ2 Ym)><Λth . (5)

The following sections provide the results of detailed inves-
tigations of this Λ-statistic characteristics by using the NP
criterion.

III. Λ-STATISTIC PERFORMANCE CHARACTERISTICS

It is convenient to investigate the exact statistic Λ(x) (5)
not in the space of the signals at the input of the antenna array
x[n] = {x1[n], x2[n], ..., xM [n]}T but in the space of variables
Y = {Y1,Y2, ...,YM }T , observed at the noncoherent matched
filter outputs. Then Eq. (5) can be rewritten in the form:

Λ = Λ(Y ) =
M∏
m=1
Λm(Ym) =

M∏
m=1

W(Ym/H1)

W(Ym/H0)
, (6)

where W(Ym/H0) and W(Ym/H1) are Rayleigh and Rice dis-
tributions respectively in accordance with made assumptions.

The Λ-statistic depends on the energy parameter A, and
depending on the value of this parameter, its behavior changes
qualitatively. Fig. 1 shows the surfaces and level curves of the
logarithm of Λ-statistic (Log Λ) as a function of Ym arguments
for two-dimensional case (M=2) for different SNR = A2/σ2.

a) b)
Fig. 1. Λ-statistic surfaces for different SNRs: a). SNR=-10 dB, b). SNR=10
dB. For illustrative purposes the functions are given for the full space of
variables Y1 and Y2 including negative values.

It is seen that the Λ-statistic in the space Y for low SNR is
well approximated by an axial symmetric function depending

on the sum of the squares of the amplitudes
M∑
m=1

Y2
m, and for

large SNR by a certain function depending on the sum of their

modules
M∑
m=1
|Ym | . Indeed, in the general case of arbitrary

dimension M, using the well-known power-series expansions
[16] of the Bessel function I0(z) for small and large values of z
it is possible to obtain the following approximate expressions
from Eq. (5):

Λ ≈ e
− A2

σ2
n∑
i=1

a2[n]
M∑
m=1

Y2
m ∼

M∑
m=1

Y2
m (7)

Λ ≈ e
− A2

σ2
n∑
i=1

a2[n] e
A

σ2
M∑
m=1

Ym

(2π A
σ2 )

m
2

M∏
m=1

√
Ym

∼

M∑
m=1

Ym, (8)

where (7) applies for small, and (8) - for large values of
SNR.
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To solve the optimal detection problem for the NP criterion
it is necessary to find the thresholds Λth for the Λ-statistic for
a given false alarm probability PFA. However, the analysis
shows that in the present case, these thresholds depend on
the SNR values which, in general, is untypical for the NP
criterion [15]. To explain the causes of this dependence let
us consider the simplest two-dimensional case (M=2) as an
illustrative example. Fig. 2 shows the division of the space Y
into the decision regions: Γ0 - signal presence and Γ1 - signal
absence for different SNRs and fixed values PFA = 10−5, 10−8.
It can be clearly seen from the graphs that to maximize the
probability of the right detection (PRD) at a fixed PFA, it is
necessary to change the shape of the division boundary lines
LΛ when the SNR is changing. Similar behavior of the division
boundary will be also observed for the multidimensional case.

a) b)
Fig. 2. The division boundary lines LΛ for two-dimensional observation space
Y (M = 2) for different SNR values: -10dB, 3dB, 10dB.

Using the exact Λ-statistic, detection curves (dependencies
PRD on the SNR) have been obtained for antenna arrays
with a different number of elements. It should be noted, that
the threshold values for the Λ-statistic can be found only
numerically for a given SNR due to the complexity of Eq.
(5). Fig. 3 shows how the PRD depends on the increase in
the number of antenna elements for the PFA = 10−5. It
is seen that the gain for the PRD ≈ 0.9 used in practice
increases by 2 dB as the number of elements doubles. This
coincides with the approximate estimates given in the known
works for noncoherent detection in radar applications [8], [17].
However, more accurate calculations show that increasing the
number of elements in the antenna array reduces this gain
from 2.2 dB, for doubling the number of elements from 2
to 4, to 1.9 dB , for doubling the number of elements from
32 to 64, see Fig.2. Also, graphs clearly show that increasing
antenna elements can significantly increase the PRD , even for
noncoherent detection (without beamforming to DoA of the
useful signal). For example, as seen in Fig.2, for SNR = 0dB,
the right detection probabilities are: PRD = 0.15 for a 16-
element antenna array, PRD = 0.55 for a 32-element and
PRD = 0.97 for a 64-element.

Fig. 3. Detection curves for the Λ-statistic for different number M of antenna
array elements (PF A = 10−5)

IV. THE APPROXIMATE DECISION STATISTICS

As it can be seen from the previous section, it is difficult
to apply the Λ-statistic in the considered scenario because the
statistic itself and a decomposition of the observation space Y
on the decision regions depend on the energy parameter (see
Fig.2). Therefore, in majority of practical tasks noncoherent
detection of signals by the NP criterion, one uses simplified
decision statistics for which threshold values do not depend
on the energy of the useful signal. Detection characteristics
of such decision statistics most widely used in practical
applications will be studied in the present work. We consider
three decision statistics T1, T2 and T3:

M∑
m=1

Ym =
M∑
m=1
|

N∑
n=1

xm[n]a∗[n]| = T1 ≥ T1th,

M∑
m=1

Y2
m =

M∑
m=1
|

N∑
n=1

xm[n]a∗[n]|2 = T2 ≥ T2th,

M∑
m=1

lnYm =
M∑
m=1

N∑
n=1

ln|xm[n]a∗[n]| = T3 ≥ T3th,

(9)

where the parameters T1th , T2th , T3th are thresholds, de-
pending only on the given level of PFA and do not depend
on the amplitude A in the case of H0 hypothesis. The first of
these statistics T1 is the sum of the amplitudes of noncoherent
matched filter outputs, it gives a good approximation of the
Λ-statistic for large SNR , see (8). The second statistic T2
is an approximate expression for the Λ-statistic at low SNR,
see (7), and the third T3 (logarithmic) is used in some
practical tasks with a large dynamic range of variation of
the signal power [17]. The boundary surfaces L1, L2 and L3
that divide the observation space Y into Γ0 and Γ1 decision
regions for the statistics T1, T2 and T3 for M-dimensional case
will be hypersurfaces: the hyperplane, the hypersphere and
the hyperboloid, respectively. From the analysis of this M-
dimensional boundaries it follows that the division boundary
LΛ for the exact Λ-statistic lies in the region between the
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boundaries L1 and L2, but the hypersurface L3 is outside this
region. Therefore, it seems reasonable to consider a combined
statistic Tcomb representing a combination of statistics T1 and
T2. To justify the introduction of such a combined decision
statistic let us note that the normalized statistics T1/M , T2/M
can be viewed as the estimates of the mean and the mean
square of the signals at the outputs of noncoherent matched
filters. It is well known that in accordance with the Chebyshev
theorem [18] these estimates are consistent, i.e. with increasing
M the statistics T1/M and T2/M are converging to the true
values of these parameters:

T1
M =

1
M

M∑
m=1

Ym
M→∞
−→ < Y >,

T2
M =

1
M

M∑
m=1

Y2
m

M→∞
−→ < Y2 >

(10)

where the operator <...> denotes statistical averaging. Since
under the hypothesis H0 the signals at the outputs of non-
coherent matched filters have Rayleigh distributions (6), then
the values of these parameters are bound by the deterministic
relation [14]:

< Y >=
√
π/2

√
< Y2 > (11)

The analysis has shown that the estimates of the parameters
in (11) have the same variances, therefore, it seems logical
to introduce a combined ad hoc statistic Tcomb as a weighted
arithmitic mean of the normalized statistics T1/M and T2/M:

Tcomb[Y] = T1
M +

√
π

2

√
T2
M =

= 1
M

M∑
m=1

Ym +
√
π

2

√
1
M

M∑
m=1

Y2
m

(12)

and explore its performance alongside with others.

V. COMPARISON OF DECISION STATISTICS
CHARACTERISTICS

To compare the characteristics of the exact Λ-statistic and
approximate statistics considered above we have performed
simulations in the Matlab environment. An antenna array
with M elements was modeled under the assumptions made
in Section II. Length 112 Zadoff-Chu sequence used in the
random access channel of LTE-Advanced networks, was taken
as a useful signal. As shown by the preceding analysis, the
characteristics of the detection system do not depend on the
modulation law a[n], and are defined by the SNR only.

A detailed comparative analysis of the detection characteris-
tics has been done for all the considered statistics for antenna
arrays with different number of antenna elements and for
different values of PFA. As expected, the approximate statistic
T1 shows visible performance degradation in the negative SNR
region, but demonstrates near optimal performance for the
larger SNR values. In this work, due to shortage of place,
we present only the detection curves behavior in the most
interesting region of the large hight detection probabilities
PRD (PRD > 0.9). In this case, it is convenient to go to the

miss detection probabilities PMiss = 1 − PRD and plot their
dependencies on the SNR for different PFA.

Fig. 4 illustrates the PMiss behavior in the most interesting,
from a practical point of view, region of values of PM =

0.1 − 0.001. The graphs show that for antenna arrays with
small number of elements (M = 2) the PMiss weakly depends
on the decision statistic used (see Fig.3a) and curves are
practically indistinguishable. However, for large antenna arrays
(M = 16) the impact of the statistic on the PMiss becomes
more significant (see Fig.3b). An especially big performance
degradation is demonstrated by the logarithmic statistic T3 .
The relative increase of the PMiss for this statistic at a fixed
value of the SNR can reach 3-4 times in comparison with
the exact Λ-statistic. For all other decision statistics (except

a)

b)
Fig. 4. Detection characteristics (PMiss = 1−PRD ) of decision statistics Λ,
T1, T2, T3, Tcomb for noncoherent detection in antenna arrays with different
numbers of elements (M=2, M=16) and different PF A.

logarithmic) for large PFA (about 0.1) the difference in the
PMiss is rather small (not more than 5%). However, for low
PFA (10−5−10−8) the use of the quadratic statistic T2 in large
antenna arrays (M=16) can lead to a relatively large increase
in the PMiss by 30-40% in comparison with other statistics
Λ, T1, Tcomb (see Fig.3b). It is also interesting to note that
the characteristics of the combined decision statistic Tcomb
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practically coincide with the characteristics of the exact Λ-
statistic (increase of the PMiss relatively to the Λ-statistic
does not exceed 2-3% for all the considered levels of PFA

and the SNR). Therefore, the combined statistic of Tcomb

can be recommended for practical use in various systems of
noncoherent detection for all SNR values.

VI. CONCLUSION

For the first time a detailed analysis of the characteristics of
the exact statistic for the optimal noncoherent signal detection
in multi-element antenna arrays has been carried out. The
analysis of the exact decision statistic behavior was fulfilled in
the space of variables observed at the outputs of noncoherent
matched filters engaged for the primary signal processing in
each element of the antenna array.

It is shown that threshold values for the decision statistic
depend on the SNR for the NP criterion, and this dependence
is caused by the deformation of the division boundary between
decision regions Γ0 and Γ1 of the observation space. The deci-
sion statistic detection curves for antenna arrays with different
numbers of elements have been obtained and analysed.

A detailed comparison of various approximate decision
statistics and the exact one has been done. It is shown that
for large multi-element antenna arrays and small false alarm
probabilities the decision statistic choice can have a sizeable
impact on the detection scheme performance. For example, the
use of the traditional quadratic statistic in the antenna arrays
with the number of elements more than 16 can increase the
miss probability by 30-40%.

To improve initial detection of UE signals at Base Stations
with large antenna arrays in the LTE random access procedure
a combined decision statistic for which the NP criterion
thresholds do not depend on the SNR has been proposed.
The characteristics of this statistic practically coincide with
the characteristics of the decision test-statistic for all levels of
the false alarm probability and the SNR.This task is important
for reliable initial detection of UE signals.
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