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Abstract—In this paper, we introduce a new synchronous
stream cipher. The core of the cipher is the Ikeda system which
can be seen as a Nonlinear Feedback Shift Register (NLFSR) of
length 7 plus one memory. The cipher takes 256-bit key as input
and generates in each iteration an output of 16-bits. A single key
is allowed to generate up to 264 output bits. A security analysis
has been carried out and it has been showed that the output
sequence produced by the scheme is pseudorandom in the sense
that they cannot be distinguished from truly random sequence
and resist to well-known stream cipher attacks.

Keywords— Stream ciphers; NLFSR; Distinguishing at-
tack; diffusion; confusion.

I. INTRODUCTION

In cryptography, stream and block ciphers are known as
symmetric cryptographic primitives used to guarantee data
privacy over a communication channel. Block ciphers offer
the possibility to transform a fixed block of symbols to blocks
of ciphertext using a fixed encryption transformation [1],
[2]. By contrast, stream ciphers encrypt each character of a
plaintext bit by bit or word by word, using an encryption
transformation which varies with time [3], [4].
Stream ciphers are characterized by limited error propagation.
Moreover, they are generally faster than block ciphers, and
they can be effectively implemented with low cost and can
achieve the same security level as block ciphers using limited
resources. For these significant advantages, stream ciphers
are widely used in telecommunication applications like SSL,
IPsec, RFID, Bluetooth, GSM, UMTS, online encryption of
big data and in military communication systems [4], [5].
Nevertheless, the security of stream ciphers has not been
studied sufficiently. So, many cryptographers are interested
in developing and analyzing stream ciphers to produce
cryptographic primitives that generate random-looking
sequences, that are as ”indistinguishable” as possible from
truly random sequence. The easy way to build this kind
of systems is by using pseudorandom number generators
(PRNG) [6], [7].
Actually, a keystream generator (KSG) that generates a long
pseudorandom sequence represents one common way to build
stream ciphers. The principal task of a KSG is to produce
a keystream with certain basic properties. These include a

very large linear complexity, large period and white-noise
statistics. It is on this basis that, the eSTREAM candidates
were launched [8] to determine secure and efficient stream
ciphers that might become useful for widespread adoption.

In this paper, we propose a new synchronous stream cipher
(SSC) where the keystream is generated independently from
the plaintext. The design of the SSC is based on the Ikeda
system. The specific properties of this chaotic system as the
extremely complex chaotic behavior introduces a nonlinearity
to the cipher and guarantees the unpredictability of the output
sequence.

The organization of the paper is as follows: The specifi-
cation of the proposed cipher is described in section II. The
security analysis of the cryptosystem is discussed in section
III. Finally the conclusion is given in section IV.

II. SPECIFICATIONS OF THE CIPHER

Nonlinear delay differential systems are known as systems
of infinite dimension [11], [12]. Hence, they have shown an
increasing interest [13], [14]. Among these systems we have
chosen the discrete model of Ikeda system, which can be
defined as follows [15]:

at+1
i = ati+1 i = 0, . . . , N − 2 (1)

at+1
N−1 = atN−1 + α · (−β · atN−1 +m · sin(at0))

where a0i represents the initial condition of the system and
α, β and m are the control parameters. Whereas ati represent
the value of the variable ai at time t.

The proposed cryptographic primitive is a synchronous
stream cipher that uses a key K of length 256-bits and outputs
16-bits in each iteration which in turn is combined with a
plaintext symbol and a ciphertext symbol will be computed.
The main core of the cipher is Ikeda system. This system can
be used to generate a keystream with a long period and good
statistical properties to provide security. Moreover, it can be
implemented with low cost. Actually, Ikeda system can be
regarded as a nonlinear feedback shift register (NLFSR) with
memory. In fact, an NLFSR is a finite state machine with a
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register. In each iteration, the state variables are updated by
shifting them to the left, except the most left state variable
which is updated in a nonlinear way by using the feedback
function. The system outputs the most right state variable in
each clock cycle.
In this context, the state variable of Ikeda system can be
viewed as a state variable of an NLFSR, and the most left
state variables of the Ikeda are updated by involving the
control parameters α, β and m. The model design presenting
Ikeda system as an NLFSR with N registers is illustrated in
Fig. 1.

at0at1. . .atN−2atN−1

f(α, β,m, atN−1, a
t
0) = atN−1 + α · (−β atN−1 +m sin(at0))

at+1
N−1

at0

α, β,m

Fig. 1. Diagram of Ikeda system as an NLFSR

From here on, we view Ikeda system as an NLFSR with
memory. According to the previous work in [15], Ikeda system
ensures a chaotic behavior, for a specific interval of the param-
eters α, β and m. For instance, for α = 0.5, β = 1, N = 7 and
m ∈ [6, 30], the behavior of the system is ergodic. Therefore,
to design a good cryptosystem based on Ikeda system, the
aforementioned parameters must be respected. In this context,
the proposed stream cipher is based on an NLFSR of length 7
with memory which holds the value of the parameter m while
the parameters α and β are fixed and regarded as known non-
secret control parameters and have as value respectively 0.5
and 1.
In the following, we introduce the setup and keystream gen-
eration phase.

A. Setup phases

The setup phase is an important phase that must be
well designed in order to prevent certain attacks such as
resynchronization attack, re-keying attack, and divide and
conquer attack. In this phase, the key is used to initialize the
state variable of the NLFSR as well as the memory.
The main key K of length 256-bits is divided
into 8 subkeys of length 32-bits labeled as
k1 = K [0..32], k2 = K [33..64], . . . , k8 = K [225..256].
These subkeys are loaded into 8 new variables denoted Xi,0

as follows:

Xi,0 = ki+1 for 0 6 i 6 7

These variables Xi,0 are updated to Xi,1 as follows:

Xi,1 = Xi,0 ⊕ (X(i+2)mod 8,0 ≫ 24)⊕ (X(i+3)mod 8,0 ≫ 16)

for 0 6 i 6 7 and where ≫ represents a right shift bit
rotation.
In order to make each variable depends of the entire key bits,

the above equation is iterated 3 times. Actually, in the first
iteration, for instance the variable X0,1 depends on X0,0, X2,0

and X3,0 i.e depends on k1, k3 and k4. In the second iteration,
the variable X0,2 depends on X0,1 and the new value of X2,1

which in turn depends on X4,0 and X5,0, and the value of X3,1

which in turn depends on X5,0 and X6,0, which mean that the
variable X0,2 depends on the subkeys k1, k3, k4, k5, k6 and k7.
By iterating the equation one more time, the new variable X0,3

depends on X2,2 and X3,2 where the variable X2,2 depends
on X7,0 and X0,0 and the variable X3,2 depends on X0,0 and
X1,0 i.e X3,0 depends of all the subkeys. Once these variables
are computing the initial states variables denoted a0i of the
NLFSR as well as the memory m will be initialized in a way
that all of them depend on the whole key bits. These variables
are computed as follows:{

a0i = 0.1 +
Xi,3

228 for 0 6 i 6 6

m = 7 +
X7,3

228 .
(2)

The form of computing each variable state a0i is chosen in a
way to make each key valid i.e all the keys can be used to
generate the keystream. In fact, in the case where all the state
variable is zeros, the system does not work i.e the system
will always output zero. This state could not hold regarding
the adding value 0.1. On the other hand, the variable X7,3

can take as maximum value 232, then the maximum value of
the fraction X7,3/2

28 is 24 = 16 which lead to the conclusion
that the value of m is bounded by 7 in the case where
X7,3 = 0 and 21. Then chaotic behaviors are guaranteed.

Once the state variables, as well as the memory, are initial-
ized. The system is iterated 12 times without producing any
output. The goal of this process is to prevent a certain attack
such as Guess and determine attack which is based on the
fact that some keystream outputs do not depend on the entire
input.

B. keystream generation phase
The keystream generation phase consists on two functions:

1) The next update function which updates the state variables
of NLFSR, 2) the output function which yields 16-bits
as output. Fig. 2 illustrates the diagram of the keystream
generator.

at0at1. . .at5at6
The output

function g(.)

mat+1
6 = f(α, β,m, at6, a

t
0) = at6 + 0.3 · (−at6 + m. sin(at0))

at0

bt

Fig. 2. General structure of the keystream generator

Next update function: In each iteration the state variables
ati of the NLFSR are updated to at+1

i , all these variables are
shifted of one position to the right while the value by the most
left register is updated in nonlinear way as follows :

at+1
6 = at6 + 0.3 · (−at6 +m · sin(at0)) (3)
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To illustrate the concept, Let the state of the NLFSR at
time t denoted by st = (at6, a

t
5, a

t
4, a

t
3, a

t
2, a

t
1, a

t
0). By

iterating the system one time, the new state at t + 1 will be
st+1 = (at6 + 0.3(−at6 +m. sin(at0)), a

t
6, a

t
5, a

t
4, a

t
3, a

t
2, a

t
1).

Output function: At each time t, NLFSR outputs the value
of the most right register i.e at0. The output function takes at0
as input and outputs bt which computed as follows:

bt = emod 216,

where e represents the fraction part of at0
The idea behind this function is to follow the aspect of a
one-way function which means that for a given output, one
is not able to derive the input despite that the function is
known which is, in turn, increases the security level of the
cipher. To give an example, assume that the NLFSR output
at0 = 7.1234567891, so the fraction part of this output is
e = 1234567891 and the output of g() is bt = 723.

III. SECURITY ANALYSIS

In this section, we investigate the security level of the
proposed cipher against well known cryptanalytic methods.

A. Statistical tests

The goal of the designer of a stream cipher is to design
a keystream generator which produces a keystream sequence
that should be indistinguishable from truly random sequences
and should not leak any information about the secret key and
the internal state of the cipher. Actually, if the keystream
generated sequence does not have a random behavior then the
generator is susceptible to distinguishable attack (and perhaps
also to a key recovery attack). In practice, the randomness
analysis relies extremely on the empirical tests of randomness.
Each test evaluates the randomness from a specific viewpoint,
by testing certain statistic characteristic. The majority of the
empirical tests are based on hypothesis tests. Therefore each
test is constructed to examine the null hypothesis, namely
that the sequence being tested is random from the specific
viewpoint of the test. The result of the statistical tests of
randomness is described in term of p-value which represents
the probability that a perfect random generator would produce
a sequence with less randomness than the sequence being
testing. In order to evaluate a test, a p-value is compared to a
significant value α. If the p-value is greater than α, thus the
null hypothesis is accepted otherwise it is rejected. The value
of α is commonly set to a small value typically 0.01. Since the
statistical randomness can be tested from several viewpoints
the statistical tests can be classified into several tests suite.
The well-known tests NIST Statistical Test Suite (STS) [16],
Diehard [17] and TestU01 [18].
In this context, we use NIST STS to examine the randomness
of the output sequence generated by the proposal keystream
generator. The reason for choosing NIST STS as tools to eval-
uate the randomness is relevant to the fact that it has used to
evaluate AES cipher and it is often used for formal certification
or approvals. In the tests, 200 keystream sequences of length

1000000- bits generated by the keystream generator were
empirically evaluated. Table I illustrate the result of the tests.
Each row of the table gives the name of the test, the number
of tests that was passed out of 200 sequences, the P-value
which can be interpreted as probability that a perfect random
generator would have produced a sequence less random as the
target sequence, and the distribution of the 200 P-value for the
individual tests. Results mentioned in the table did not show
any deviation from a truly random sequence since all the value
of the P-value is greater than the significant value α.

B. Distinguishing attack

The randomness of the keystream is an important require-
ment for a stream cipher. A bias in the keystream could be
exploited to distinguish a keystream from a truly random
sequence. This kind of attack is known as distinguishing
attack. The easy way to evaluate the randomness of the
keystream generated is to use statistical tests. Despite that,
the latter play an important role in analyzing the security of
the cipher, they are still insufficient to demonstrate whether
the cryptosystem is secure, due to the fact that they don’t take
into account the structure of the generator. For this reason, we
introduce in the following, two tests to measure the effect of
the key in the keystream generation process.

1) Correlation analysis: The aim of this test is to examine
the correlation between the key and the first bits of keystream
sequence. High correlation between them may allow an at-
tacker to disclose the secret key or reduce the search key
space. To illustrate, assume a KSG with a key of l-bits, during
this experience, T random keys denoted K1,K2, ...,KT are
chosen. l first keystream bits derived from each key Ki

is computed and denoted KSi. Then each key is XORed
with the corresponding keystream bits to form the variable
XRi = Ki ⊕KSi. Once the T variables XRi are obtained,
the weight of each XRi denoted Wi is computed where the
weight consist of counting the number of a bit 1. Then the
obtained T weights Wi are classified into 5 categories. The
distribution of the Wi is binomial i.e Bin(l, 1/2) . To assess
this test a χ2 test of Goodness of Fit is applied which has the
following form:

χ2 =
5∑

i=1

(oi − ei)2/ei

where oi and ei represent the observed and the expected
frequency for a category i respectively. If the p-value which is
relevant to the value of χ2 is greater than the significant level
α, so the test is passed.
In this context, the cipher uses a key of length 256-bits, then
the 5 categories are chosen as (i) 0 − 121, (ii) 122 − 125,
(iii) 126 − 130, (iv) 131 − 134 and (v) 135 − 256. This test
is applied for T = 210 and its corresponding p-value is 0.57
which is acceptable result since it is greater than the significant
level α = 0.01. To be more accurate we repeat this correlation
test 100 times and the average of 100 p-values is 0.53 which
emphasize that there is no correlation between the key and the
generated keystream.
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TABLE I
RESULTS OF NIST STATISTICAL TESTS SUITE ON THE CIPHER OVER 200 SEQUENCES

STATISTICAL TEST C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION
Frequency 21 16 21 22 23 19 19 15 30 14 0.375313 197/200

BlockFrequency 16 26 17 13 20 20 26 21 23 18 0.534146 199/200
CumulativeSums 22 18 19 20 22 18 22 23 19 17 0.991468 198/200

Runs 18 19 29 15 19 20 27 21 17 15 0.366918 198/200
LongestRun 21 17 16 19 20 24 25 14 17 27 0.524101 198/200

Rank 35 24 9 15 14 14 14 25 21 29 0.000422 199/200
FFT 22 20 24 22 20 10 23 20 17 22 0.605916 198/200

NonOverlappingTemplate 28 22 12 18 16 24 30 13 19 18 0.064822 199/200
OverlappingTemplate 15 30 16 18 13 21 24 25 16 22 0.171867 194/200

Universal 18 17 17 27 26 19 18 19 17 22 0.709558 199/200
ApproximateEntropy 25 25 20 28 19 12 20 16 22 13 0.191687 197/200
RandomExcursions 8 15 14 13 12 9 16 9 8 15 0.454224 119/119

RandomExcursionsVariant 10 16 12 8 16 15 10 10 12 10 0.599316 119/119
Serial 27 20 18 24 19 13 11 20 26 22 0.213309 198/200

LinearComplexity 16 18 18 17 22 25 29 15 23 17 0.410055 197/200

2) Diffusion analysis: Diffusion analysis for a stream
cipher allows to determinate the sensitive of the output for a
change in the input. In a stream cipher with a good diffusion
property, if a single bit is flipped in the key, the outputs
keystream changes in an unpredictable manner and every bit
in the output keystream have the probability one half to be
changed. This is defined as the Strict Avalanche Criterion-r
(SAC-r) and Strict Avalanche Criterion-c (SAC-c).

SAC-r Diffusion test

The purpose of this test is to check whether one-half of
keystream bits is changed for any flipped bit in the key. To
illustrate this concept, assume a keystream generator used a
key of length n, and let an error vector ei = (0, . . . , 1, . . . , 0)
where 1 is located in the ith position. This test can be
performed as follows: a random key K is chosen, and the
L bits of the associated keystream is generated. Then the first
bit of the key is flipped by XORing the key and the error
vector e1 i.e K = K ⊕ e1 and used as input to the keystream
generator to yield the associate keystream. The new keystream
and the original one are XORed and stored in the first row r1
in the matrix M1. This process is repeated for R− 1 random
different keys and the derived result for each key is stored in
a new row ri (i 6= 1) in M1. Once M1 is constructed, the
weight of each row W r

i is computed which mean the number
of bits with value 1 i.e W r

i = #1(ri). As result, R weights
W r

1 , . . . ,W
r
R are obtained which are then classified into 5

categories and the frequency of each category is computed.
For a secure cryptosystem, the frequency value must follow a
multinomial distribution with two parameters R and pi where
the later represents the probability of a value to belong to the
ith category and determined by using cumulative distribution.
Finally, the χ2 test of Goodness of Fit is applied and the p-
value is calculated. This experience determines the sensitivity
of the output by flipping the first bit of the key. So in order to
evaluate the effect on the other input bits, on should repeat the
previous test by applying the other considering error vector ei
where i 6= 1.

In this context, the proposed scheme used a key of length
256-bits, so we have applied the SAC-r diffusion test on the
scheme for n = 256, L = 210 and R = 210. So the appropriate
categories are chosen like this (i) 0− 498, (ii) 499− 507, (iii)
508− 516, (iv) 517− 525 and (v) 526− 1023. The result of
this test which investigates the impact of all the key bits on
the keystream outputs bits is illustrated in Table II. According
to this table, we notice that the p-values corresponding to each
input bit are greater than α = 0.01. Therefore, the cipher pass
this test.

IV. CONCLUSION

In this contribution, a word based stream cipher based
on Ikeda system is introduced. This cipher is designed in
a way that the well-known attacks are infeasible by well
designing the setup phase which ensures the diffusion property
and selecting the appropriate parameters of the system which
ensure good statistical properties and long period.
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