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ABSTRACT

We propose a new front-end feature compensation technique
to improve the performance of Automatic Speech Recogni-
tion (ASR) systems in noisy environments. First, a Time De-
lay Neural Network (TDNN) based Denoising Autoencoder
(DAE) is considered to compensate the noisy features. The
DAE provides good gain in performance when it has been
trained using the noise present in the test utterances (“seen”
conditions). However, if the noise present in the test utterance
is different to what was used in the training of the DAE (“un-
seen” conditions), then the performance degrades to a great
extent. To improve the ASR performance in such unseen con-
ditions, a model compensation technique, namely the Vector
Taylor Series with Auditory Masking (VTS-AM) is used. We
propose a new Signal-to-Noise Ratio (SNR) based measure,
which can reliably choose the type of compensation to be used
for best performance gain. We show that the proposed tech-
nique improves the ASR performance significantly on noise
corrupted TIMIT and Librispeech databases.

Index Terms— Noise robust speech recognition, Audi-
tory masking, Vector Taylor series, Time delay neural net-
work, Denoising autoencoder.

1. INTRODUCTION

Inspite of all the advances in the ASR performance in the re-
cent years, noisy speech is still a challenge. Different ap-
proaches have been reported in literature to improve the noise
robustness of ASR systems. Feature normalization, such as
cepstral mean and variance normalization, is widely used to
deal with the speech degradation. Different feature extrac-
tion processes like auditory based modulation spectral feature
for reverberant noise [1] and deep belief network based tan-
dem features [2] have been employed for noise robust ASR.
A psychophysically inspired amplitude modulation filter bank
based feature extraction scheme has been proposed in [3].
Different compression techniques [4, 5], such as root com-
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pression instead of log compression of the mel-filter energy,
have improved ASR performance.

Several techniques like Vector Taylor Series (VTS) [6]
and Psychoacoustic Model Compensation (Psy-Comp) [7, 8]
have been proposed for Gaussian Mixture Model-Hidden
Markov Model (GMM-HMM) based techniques. These tech-
niques have also been used successfully in the front-end pro-
cessing for Deep Neural Network (DNN) based techniques
in [9, 10]. The VTS-AM feature enhancement [4] has been
shown to outperform the traditional VTS technique. Beside
this, a deep Convolutional Neural Networks (CNNs) based
noise robust speech recognition is proposed in [11], which
outperforms long short-term memory Recurrent Neural Net-
works (RNNs) [12]. For robust feature computation, DAE
[13] has provided significant improvement over other tech-
niques. DAEs based on different types of networks like DNN,
CNN, RNN [14, 15], and TDNN [16] have been investigated
to improve robustness against noise.

In this paper, we propose a robust front-end for speech
recognition. The advantage of a robust front-end is that it does
not depend on the specific architecture of the speech recogni-
tion engine. Therefore, it can be used for robustness across
different architectures. To build a robust front-end, we take a
closer look at the performance of the TDNN based DAE. The
TDNN-DAE architecture is the same as proposed in [16]. In
particular, we examine the performance of the DAE in “seen”
and “unseen” conditions. The “seen” condition is where the
noise encountered in the test utterance was used in the train-
ing of the DAE and the “unseen” condition is where the noise
encountered in the test utterance was not used in the train-
ing of the DAE. This study is important, since it is extremely
difficult, if not downright impossible, to train the DAE for all
types of noise. We show that although the DAE performs very
well in the seen conditions, it under-performs compared to
the VTS-AM for the unseen conditions. Therefore, it would
be beneficial to employ the VTS-AM method where the DAE
fails. However, the challenge is to automatically identify ut-
terances where the DAE has failed. To this end, we propose
a new SNR based measure, which can reliably indicate the
failure or success of the DAE.
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The remainder of the paper is organized as follows. Sec-
tion 2 briefly describes the TDNN based DAE for robust fea-
ture processing. Section 3 describes the Vector Taylor Series
expansion with Auditory Masking. Section 4 describes the
computation of the SNR based measure and the overall algo-
rithm is presented in Section 5. Section 6 and 7 deal with the
experiments and results, while Section 8 concludes this paper.

2. TIME DELAY NEURAL NETWORK BASED
DENOISING AUTOENCODER

In TDNN architecture [17], network is organized with narrow
contexts in initial layers and wider context for deeper layer
to learn the transform. TDNN architecture is motivated and
employed for DAE in [16] to estimate enhanced features. In
this architecture, input features consist of noisy speech Mel-
Frequency Cepstral Coefficients (MFCCs), whereas target
features are the corresponding clean speech MFCCs. Back
propagation training approach computes network parameters
such that it can capture the feature enhancement mapping. We
have followed the TDNN network architecture as described
in the study [16]. This DAE network has 4 hidden layers and
each hidden layer consists of 1024 ReLU activation nodes.

3. TAYLOR SERIES EXPANSION WITH AUDITORY
MASKING

Traditional assumption of noise corruption model is that the
speech and noise are additive in the spectral magnitude do-
main. But, according to psychoacoustic corruption model
[18], only the portion of noise which is above the masking
threshold of clean speech is added to the speech. The psy-
choacoustic corruption function is described in [7, 8]. In
[4], we have altered VTS equations by bringing in the audi-
tory masking criteria, which is known as VTS-AM. In this
approach, a GMM is trained on the clean speech denoted
as λx = {~µx, ~σx, ~w}. Next, the GMM parameters (mean
and variance) are compensated according to the method de-
scribed in [4]. Let the compensated model be denoted as
λy = {~µy, ~σy, ~w}. The pseudo-clean features ~xMMSE are
estimated from the noisy observations as [9]:

~xMMSE = ~o−
M−1∑
m=0

p(~o|λym)(~µym − ~µxm) (1)

where ~o is the noisy speech features. p(~o|λym) is the posterior
probability for the mth Gaussian mixture component of the
noise compensated GMM against the observation ~o. ~µym is
themth component of the noise compensated GMM and ~µxm

is the mth component of the clean GMM.

4. A NEW APPROACH FOR SNR COMPUTATION

The aim is to reliably identify conditions, where the DAE has
failed to enhance the features. If the DAE has failed to en-
hance the features, then it can be expected that the SNR of
the DAE enhanced features will be lower in unseen cases as
compared to the seen cases. The SNR of the DAE enhanced
features, then, can be a reliable indicator as to whether the
DAE has failed to work. The challenge, however, is to com-
pute the SNR of the DAE enhanced features, since we do not
have access to either the clean features or the noise energy.

Leveraging on the noise-estimation algorithm of the VTS-
AM method, we describe, here, a new method of comput-
ing the SNR of a signal without needing the clean signal en-
ergy or the noise energy. The VTS-AM method employs
a GMM trained on the clean speech. Let it be denoted as
λx = {~µx, ~σx, ~w}. The GMM means ~µx can be converted
to mel-spectral domain through multiplication with Inverse
Discrete Cosine Transformation (IDCT) matrix and exponen-
tiation operation. Let the mel-spectral representation of the
GMM means be denoted as ~µe. The mean ~µavg of the GMM
means can then be computed as:

~µavg =

∑M
i ~µe

i

M
(2)

whereM is the total number of mixture in GMM. The average
energy of clean speech means can then be computed as: S =∑D

d (µavg
d )2, where D is the dimension of the feature vector.

The reason behind taking the average of the GMM means in
the above equation is that it would provide an estimate of the
average energy in a frame in the training set.

The VTS-AM technique estimates the noise energy using
Expectation Maximization (EM) technique. Let us denote the
noise vector estimated by VTS-AM for a given noisy utter-
ance as ~µn in MFCC domain. Next step, convert ~µn to mel-
filter bank domain which is denoted as ~µe

n. The noise energy
can then be computed as: N =

∑D
d (µe

nd)
2.

Once we have the clean speech energy S and the noise
energy N , we can compute the SNR as:

SNR = 10log10
S

N
(3)

It is worth noting that the above described SNR is not the
true SNR of the noisy signal. It would be more accurate to
say that the SNR computed this way is a ratio of the average
energy of the training speech to the noise in the noisy signal.
However, since the average energy of the training speech is a
constant, this SNR would indicate the relative noise content
of a signal. In other words, if the SNR of signal A is higher
than the SNR of the signal B, then it can be reliably said that
signal A has lower level of noise content compared to signal
B.
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5. PROPOSED FRONT-END PROCESSING

In this section we outline the proposed method. First, a
TDNN based DAE model is trained using noisy speech ut-
terances and their corresponding clean speech utterances.
In Figure 1, method of TDNN DAE training approach is
described.

Fig. 1. TDNN DAE training

During the recognition phase, the test utterance is input to
the DAE and enhanced (pseudo clean) features are computed.
After feature enhancement, SNR is computed using proposed
method as discussed in Section 4. If the SNR value is greater
than the threshold, DAE enhanced features are used for final
recognition. Otherwise, the test utterance is enhanced with
VTS-AM technique discussed in Section 3. This scheme is
illustrated in Figure 2.

Fig. 2. Diagram of the proposed method

6. EXPERIMENTAL SETUP

To validate the effectiveness of the proposed method, we have
considered two different speech databases TIMIT and Lib-
rispeech. All the experimental setups are implemented with

Kaldi speech recognition toolkit [19]. To prepare the test data
for both databases, we corrupted clean test waveforms with
different noise types like hfchannel (HF), F-16 and babble
(BAB) at various SNRs like 0dB, 5dB, 10dB and 15dB. To
accomplish this task, we have used the Filtering and Noise
Adding Tool (FaNT) [20]. More details on data preparation
can be found in [4]. We have followed the DNN framework
for speech recognition and we trained two sets of acoustic
models for TIMIT and Librespeech databases using the clean
training speech. 23 dimensional Mel Frequency Cepstral Co-
efficients are used as feature vectors.

Contexts for the DAE network with four hidden layers
is organized as (-2,-1,0,1,2) (-1,2) (-3,3) (-7,2) (0) which is
asymmetric in nature. Input temporal context for the network
is set to (-13,9).

The TDNN DAE was trained on the training data of the
respective databases, which was corrupted with the desired
noise types. We used several different combination of noise
types to simulate the seen and unseen conditions. For exam-
ple, if the goal was to simulate a seen condition for the noise
type HF, then the DAE was trained on training data corrupted
with different levels of HF, F-16 and BAB noise. On the other
hand, if the goal was to simulate an unseen condition for the
noise type HF, then the training data was corrupted with dif-
ferent levels of F-16 and BAB noise, leaving out the HF noise.
For VTS-AM technique, two seperate GMMs with 128 com-
ponents are trained with clean training data from TIMIT and
Librispeech database.

7. RESULTS

We have conducted a series of experiments to observe perfor-
mance of various robustness techniques. Experimental result
for the TIMIT database, in the terms of Phoneme Error Rate
(PER) is provided in Table 1. The PER achieved for the clean
test data was 22.7%. It can be observed that recognition accu-
racy degrades drastically according to the noise level. After
employing VTS AM technique 12% absolute improvement is
observed on an average. Interesting results are observed for
the DAE based feature enhancement. While 21% absolute
improvement is obtained for seen conditions, for unseen con-
ditions, the improvement is only about 3.4%. It can be clearly
seen that VTS-AM can offer significantly better performance
gain for unseen conditions.

Table 2 shows experimental results from Librispeech
database. We have achieved 14.04% WER for clean test data
of Librispeech. Here also, we can observe absolute 7.42%
performance improvement for VTS-AM method and 20.4%
absolute improvement for seen condition using TDNN based
DAE technique. However, for unseen conditions, there is
a performance degradation of about 6.8% compared to the
system with no enhancement. This seems to indicate that the
DAE based enhancement may not be suitable for all condi-
tions.
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SNR No Enhancement VTS-AM
DAE seen
condition

DAE unseen
condition

F-16

0dB 87.6 66.0 54.3 79.4
5dB 76.9 54.8 42.4 65.2
10dB 57.1 44.0 34.7 50.2
15dB 41.6 36.0 29.8 38.5

BAB

0dB 79.7 66.2 54.5 73.2
5dB 67.5 53.3 43.9 63.7
10dB 51.5 44.1 36.0 53.8
15dB 40.3 36.2 31.35 44.9

HF

0dB 81.2 60.0 46.8 74.6
5dB 65.2 50.1 38.0 61.7
10dB 48.6 41.6 32.2 48.9
15dB 37.4 34.2 29.0 39.4

Average 61.2 48.8 39.4 57.7

Table 1. Phoneme Error Rate (in %) for VTS-AM and DAE
for TIMIT dataset

SNR No Enhancement VTS-AM
DAE seen
condition

DAE unseen
condition

F-16

0dB 89.1 76.1 55.3 88.1
5dB 70.7 51.5 33.8 67.1
10dB 41.6 31.7 23.2 38.7
15dB 23.3 21.2 18.7 24.5

BAB

0dB 85.0 80.3 58.7 91.1
5dB 59.7 54.8 35.9 73.0
10dB 34.2 32.1 23.6 52.1
15dB 21.9 21.0 18.9 40.0

HF

0dB 83.7 70.6 45.9 86.5
5dB 61.9 48.1 30.1 66.9
10dB 35.8 31.6 22.3 47.8
15dB 22.9 21.9 18.5 36.2

Average 52.5 45.1 32.1 59.3

Table 2. Word Error Rate (in %) for VTS-AM and DAE for
Librispeech

Initially, we tried to stack the VTS-AM technique and the
DAE based enhancement by training the DAE on the VTS-
AM enhanced features. However, it did not result in signif-
icant performance gain. We also tried to stack the two tech-
niques the reverse way, i.e. by using VTS-AM enhancement
on the DAE enhanced features. This also did not result in
any gain. Therefore, it was concluded that the two methods
cannot be used on top of each other. However, if from the
DAE output, it can be determined that the DAE has failed to
work, then we can fall back on VTS-AM. It was hypothe-
sized in Section 4, that the SNR of the DAE enhanced feature
will be lower in the unseen conditions than the seen condi-
tions. Table 3 shows SNR values computed according to the
method proposed in Section 4 for features enhanced by dif-
ferent methods. It can be observed that SNR values of the
DAE output for unseen condition is lower as we had hypoth-
esized. The SNR values for other methods (VTS-AM output
and DAE seen output) are also provided for comparison and
it can be clearly seen that their SNR values are higher. Based
on these SNR values, a threshold of 85dB served as an excel-
lent indicator as to whether the DAE has failed to enhance the
features. Notice that SNRs of even 75dB are being designated

as low in this section. This is because these SNRs are not true
SNRs. They are low in the sense that they are lower than the
SNR for other methods.

TIMIT Librispeech

VTS AM
DAE
seen

condition

DAE
unseen

condition
VTS AM

DAE
seen

condition

DAE
unseen

condition

F-16

0dB 133.56 123.30 79.20 148.23 159.91 74.90
5dB 137.48 122.59 75.40 162.57 165.02 71.99
10dB 144.49 121.10 72.17 174.04 170.42 72.48
15dB 149.88 118.84 70.83 183.95 175.02 76.63

BAB

0dB 140.57 119.31 59.05 150.70 170.24 34.23
5dB 144.99 116.10 61.90 166.74 174.56 41.07
10dB 151.84 114.85 66.93 181.86 177.66 47.20
15dB 156.32 113.95 72.72 193.68 178.83 51.80

HF

0dB 139.16 129.04 51.11 167.46 181.86 2.38
5dB 146.56 128.60 52.59 179.03 180.22 5.17
10dB 152.03 127.00 59.70 189.04 180.30 11.86
15dB 155.40 125.37 71.42 197.56 181.62 21.62

Average 146.02 121.67 66.08 174.57 174.63 42.61

Table 3. SNR values (in dB) computed as per Section 4 after
different enhancement techniques on TIMIT and Librispeech

In Table 4, we can observe the efficacy of the proposed
scheme. On both TIMIT and Librispeech databases and in all
conditions, a significant gain in performance can be seen. The
PER in unseen conditions improved from 57.79% to 49.34%
in case of TIMIT, while the WER for unseen conditions im-
proved from 59.39% to 45.14% in case of Librispeech.

TIMIT Librispeech

SNR
Integrated

seen
condition

Integrated
unseen

condition

Integrated
seen

condition

Integrated
unseen

condition

F-16

0dB 54.3 66.2 55.9 76.1
5dB 42.5 55.6 34.6 51.5

10dB 34.9 44.5 23.5 31.7
15dB 30.3 36.8 19.0 21.2

BAB

0dB 54.7 66.1 58.9 80.3
5dB 44.1 53.2 36.4 54.8

10dB 36.3 44.4 24.3 32.1
15dB 31.3 37.4 19.3 21.0

HF

0dB 47.0 60.1 46.7 70.6
5dB 38.1 50.1 30.6 48.1

10dB 32.4 41.7 22.6 31.6
15dB 29.2 36.0 18.7 22.1

Average 39.6 49.3 32.5 45.1

Table 4. Phoneme Error Rate (in %) for TIMIT and Word
Error Rate (in %) for Librispeech obtained using the proposed
front-end processing (Comparison with results in Table 1 and
Table 2 show relative improvement)

8. CONCLUSION

In this paper, we proposed a robust integrated approach for
speech recognition in noisy conditions. We have shown that
while TDNN based DAE provides significant performance
gain in seen conditions, it does not perform as well in unseen
conditions. We have also shown that whether the DAE has
failed to enhance a signal can be known from the SNR of the
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DAE enhanced signal. A new approach to estimate the SNR
of the DAE enhanced signal has been described and a new
approach to integrate VTS-AM and DAE technique has been
proposed. The integrated approach performs well in both seen
and unseen conditions. We are currently studying the effect
of frame selection and root compression on this integrated ap-
proach.
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