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Velocity Variability in MRI Phase-Contrast
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Abstract—MRI phase contrast is a well known technique for
computing the average velocity associated to each pixel. In this
work, we calculate the exact probability distribution function
for the velocity given the noise in the signal. This pdf is not
necessarily Gaussian, particularly for low Signal-to-Noise ratio.
We first find the pdf of the signals phase, assuming Gaussian noise
in the real and imaginary channels of the signal. The pdf of the
velocity is then the convolution of the phases pdfs. To confirm
this, we measure several times the velocity in a flow phantom
and compare the empirical histogram with the theoretical pdf.
We also acquire the velocity from a volunteers aorta using a
standard protocol for 4D Flow and multiple coils. Based on this
noise characterization, we also propose an optimal weighing for
combining multiple coils which is not based only on the coil
sensitivities.

Index Terms—Flow MRI, Phase contrast velocity, Ascending
and descending aorta

I. INTRODUCTION

MRI Phase-Contrast [1] is a well known technique used to
compute the velocity associated to each pixel. It assumes that
all spins within the pixel have the same velocity (equivalently,
it measures an average velocity) and that it is constant during
the readout. These velocities are used in many applications
such as MRI-PC Angiography [2], 4D Flow [3], quantization
flow-rate [4], wall shear stress [5], [6], pressure [7], [8], and
others.

For many of these applications it is necessary to know the
precision and accuracy of the measured velocity. For example,
if 4D Flow velocities are used to feed a fluid mechanic
model to estimate physiologically important parameters, such
as pressure, and others, one way to estimate the quality of the
estimation is by knowing the precision of the input data (it
turns out that accuracy is not a problem because there is no
bias).

In most of the literature referring to the Velocity-to-Noise
Ratio (VNR) [9]-[12] it is assumed that the standard deviation

of the velocity is:
~ V2 Ve

= 1

7V = T SNR M

where V. is the maximum encoded velocity and SNR, the
signal-to-noise ratio in the image. We will show that this is
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not necessarily true, first because the standard deviation is not
the same for all pixels as stated in [13] and [14], and second,
because this formula assumes a Gaussian distribution which
is not true for low signal regions [15].

The purpose of this work is to find the exact probability
distribution function (pdf) of the error in the velocity given a
known pdf of the error in the signal. We first find analytically
the pdf of the phase of the signal, and then by convolution,
the pdf of the velocity. These pdfs are different for each pixel.

To confirm the theoretical result, we measured several times
the velocity in a simple flow phantom and compared the
empirical histogram with the theoretical pdf. We also acquired
the velocity from the ascending and descending aorta using
a standard protocol for 4D Flow. Finally, we show how our
results can be used to estimate the velocity precision, and how
that can be used to combine data from multiple coils.

In this manuscript we review the phase contrast technique
and we derive the pdf for the velocity (section II); we describe
the experiments and finally we show the results (section III)
and conclusions (section IV).

II. THEORY AND METHODS
A. MRI Phase-Contrast

For simplicity of notation we will assume two acquisitions,
one without velocity encoding m,, and another with velocity
encoding m;. In practice we can have more encodings and
they can occur in other combinations, but the principles are
the same. The acquisitions in k-space are:

M,(k(t)) = /V m(x)e” 2T X dx )

and
Mi(k(t) = [ mlxje 2Ok
%

where k(t) is the standard k-space trajectory given by the
zeroth order moment of the gradients, and k, is the first
moment of the gradients. It is assumed that the velocity v(x)
is unique for each pixel x and constant in time. In a noiseless
situation the two images would be:

—i2mk, v (x)

mo(x) =m(x) and my(x) =m(x)e 4)
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where m, and m are the inverse Fourier of M, and M. The
velocity is estimated as the difference of the phases:

21k, - v(X) = ¢p — b1 = Ao

where ¢ and A¢ are in the range —m...7.

Let Venc = 1/(2]ky|) be the encoding velocity, v(x) =
k, - v(x), the projection of the velocity in the direction of
the encoding, and 0(x) = v(x)/Venc, the velocity in units of

Venc, then:
enc o) - %
-—

B. Effect of acquisition noise in the velocity

(&)

(6)

We assume that the signal acquisition has independent and
identically distributed additive Gaussian errors in the real and
imaginary channels. To compute the pdf of the velocity, we
first derive the pdf of the phase pg(¢), and then we compute
the auto-convolution (cyclically) to find the pdf of the velocity
paa(Ag). This is done in a per pixel base, so we drop the
dependence of x.

We express the noisy signal as a vector in the complex
plane. Without loss of generality we assume that m is real
and of magnitude a, such that the measured signal will follow
a Gaussian distribution centered in a.

The probability distribution of the angle ¢ will be given by
the line integral of the 2D distribution along the direction ¢,
starting from the origin. Let pr o (7, ¢) be the pdf of the noisy
measurement in polar coordinates is:

1 _r%-2arcos¢+a?
pR,@(Tv ¢) = 2 26 202 (7)
o
which can be solved to be [16], [17]:
1
pa(p) = 7.
T 3

(esz 4 b7 sin? ¢\/mbcos ¢(1 + erf(bcos ¢)))

where erf is the error function and b = %(a /o). This
expression is parameterized to the ratio (a/c), a quantity
related to the signal-to-noise ratio of the original signal. This
pdf is plotted in Fig. 1a for different values of b.

For b = 0 (no signal) the probability is uniformly distributed
in —7...m, which can be easily verified in pg(¢) since
e~" =1 and the second term is zero:

po(9) = o ©
™

For larger b (more signal) the pdf tends to a Gaussian

distribution. This can be verified by noting e 0,
1+ erf(bcos¢) ~ 21 (%) sin¢ &~ ¢, and cos¢ =~ 1 such
that e~ 5" ¢ cog p v =074
b b2 2
~——e V9 10
Pe(9) = e (10)
which is of course the Gaussian distribution:
1 2 2
= —— e ¢ /2% 11)
e
pa (o) Vro (
with o = 1/(\/2b) = o /a.
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(a) pdf of ¢

(b) pdf of the velocity (A¢p/m)

Fig. 1: Probability distribution of ¢ and A¢ for different
values of b.

Finally, the probability distribution of the velocity (or phase
difference) is the auto-convolution of this pdf,

Pas(Ad) = ps(P)*pa (o)

where * is the periodic convolution in the interval —m... 7.
The result of this convolution is shown in Figure 1b for
different values of b.

A more practical way for having a notion of the precision
of the velocity is to look at its standard deviation and the
68% and 95% intervals (they would correspond to one and
two standard deviations if the distribution was Normal). The
standard deviation for each b value is shown in Fig. 2a and
the intervals in Fig. 2b.

It can be seeing that for b values smaller than 2.5 the
Gaussian approximation fails, and that the standard deviation
will be overestimated (b < 0.7) and slightly underestimated
(0.7 < b < 2.5).

(12)

C. Multiple coils

In a realistic setting, it is common to have data from multiple
coils, which are combined using a weighted average.

v = E w;vi,
i

The final pdf of the velocity can be expressed as a repeated
convolution.

13)

1
pyv, (0/w1) ¥ .. xpyy (v/wN). (14)

w1 WN

pv(v)

Typically, the weights w; are computed to minimize the final
velocity variance (w = argmin ), wioj ). If the pdf of the



2018 26th European Signal Processing Conference (EUSIPCO)

Standard Deviation

(b)

Fig. 2: a) Standard deviation of v/Venc and b) the 68% and
95% interval for v/Venc as a function of b. In (a) we also
plot the standard deviation for the uniform and Gaussian
distribution.

velocity were Gaussian, these weights depend only on the coil
sensitivities and are [18], [19]:
52

9

=%
where .S; are the coil sensitivities. We will call this ”Gaussian
weighting”. But for arbitrary variances per coil, it can be
calculated that the minimum is achieved for:
I1o7

j#i

Xy Il e
itk

(15)

w; =

(16)

wj

We propose to use the actual variance as given by Fig. 2a.
For this, we need to calculate b. Since we only have one
acquisition, we use the weighted average of the coils as an
estimation of the magnitude a;.

a; = Si| Y Spmy] (17)
k

where m,; are the complex images. The sensitivities can be

estimated from the same images using low-pass filtering.

The signal standard deviation, o; can be estimated from

background pixels.

D. Experiments

We performed two experiments, in one velocity phantom
and in one volunteer. The velocity phantom consisted of a
vinyl tubing circuit (12 mm diameter) connected to a water
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Fig. 3: Cumulative Distribution Functions (CDF) of the ve-
locity for one pixel in the background and another inside the
tube. In blue for the empirical and in red for our theoretical
method.

pump which produced a constant water flow of approximately
2.4 I/min and T1=4000ms. The acquisition was done in a
1.5T Philips Achieva scanner employing a 2D Fast Field Echo
sequence with TR/TE = 7.1/4.1 ms, resolution of 1.5 x 1.5 x
4 mm? and a Venc = 70 cm/s in the trough plane direction with
one surface coil. The acquisition was repeated 50 times (with
and without velocity encoding) in the exact same conditions.
We computed the parameter a as the pixel magnitude averaged
over the 50 acquisitions and, o of the noise as the standard
deviation of the real and imaginary components of the signal
for the 50 acquisitions.

We also applied our analysis in one volunteer. We scanned
separately the ascending and descending aorta to ensure an
anatomically perpendicular plane at each location. It was
acquired in the same Philips scanner with a five-elements
cardiac coil, employing a 4D flow sequence of a single
slice with TR/TE = 6.9/4.1 ms for the ascending aorta,
TR/TE = 6.9/3.4 ms for the descending aorta, resolution of
1.5 x 1.5 x 4 mm?, 30 frames per heart beat prospectively
gated, and Venc = 200 or 180 cm/s in the ascending and
descending aorta respectively.

III. RESULTS AND DISCUSSION
A. In-vitro

The phantom data validated our theory. We compared the
theoretical pdf with the acquired histogram for pixels in the
background and in the tube. Fig. 3 shows the Cumulative
Distribution Functions (CDF) for two of these pixels, showing
a good fit. Fig. 4 shows the magnitude (a) and velocity (b)
for one particular acquisition. Fig. 4c shows the computed
values for b and Fig. 4d the standard deviation for the velocity,
evaluated from Fig. 2a. We propose to interpret the velocity
in the tube as having a “velocity of 35 4+ 5 cm/s”.

B. In-vivo

We show the results obtained from actual data obtained from
the aorta. Fig. 5 shows the values for b, the through plane
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Fig. 4: Simple velocity phantom: (a) left and top) Magnitude
(b) right and top) Phase-contrast velocity in the through plane
(c) left and down) b values and (d) right and down) standard
deviation (SD) of the velocity.

SD(cm/s)

Fig. 5: Ascending (left) and descending (right) aorta for one
particular time frame and one coil, parameter b (first row),
velocity (second row) and velocity standard deviation (SD)
(third row).

velocity and the standard deviation of the velocity from the
theoretical curve in Fig. 2a. These images correspond to the
most relevant coils and the time frame when the velocity is
maximum. As expected, the standard deviation of the velocity
is larger for low signal regions and farther away from the coil.

We also show the resulting velocity, in Fig. 6, when the
coils are combined using the standard Gaussian weighting and
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Fig. 6: Combined velocity (first row) and standard deviation
(second row) computed from Gaussian weighting (left) and
computed from True pdf weighting (right).

our proposed True pdf weighting. It can be appreciated that
the total variability of the combined velocity is reduced with
our proposed weighting. For example, the peak velocity in
the ascending aorta changes from 127 4+ 17.5 cm/s from the
Gaussian weighting to 112 4+ 11.8 cm/s from the True pdf
weighting.

IV. CONCLUSION

We formulated a method to obtain the probability density
function (pdf) of the velocity in MRI-PC, such that it can be
used to estimate the precision in the velocity measurements.
We show that this pdf can be approximated to a Gaussian
when the voxels are high Signal-to-Noise ratio. The analytical
formulation was compared to actual measurements from the
scanner showing an excellent fit. In addition, using the correct
standard deviation for the velocity in each coil we were
able to combine them such that the final velocity variance
is minimized.
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