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Arbitrary Length Perfect Integer Sequences Using
Geometric Series

Soo-Chang Pei, and Kuo-Wei Chang

Abstract—A novel method to construct perfect integer se-
quences based on geometric series is proposed. The method
can be applied to arbitrary signal length. A closed form
construction has been derived for a given ratio. Moreover,
perfect Gaussian integer sequences can also be constructed
by this method. The idea can be further generalized to obtain
other perfect integer sequences from a given one by the Ex-
tended Euclidean algorithm. To the authors’ knowledge, these
sequences cannot be found by any previous work. Concrete
examples are illustrated.

Index Terms—Discrete Fourier transform, geometric series,
zero autocorrelation, perfect integer sequences.

I. INTRODUCTION

The zero autocorrelation (ZAC) or perfect Gaussian inte-
ger sequences have been studied a lot [1]-[13] recently since
they have many applications such as code division multiple
access (CDMA) [11], equalization, synchronization, channel
estimation, cell search and CW radar [10], [14]. On the con-
trary, perfect integer sequences are less discussed because
it is not easy to find a non-trivial one. As we can see, a
perfect Gaussian integer sequence with length N has 2N
variables since each value has the form a + b7, but for a
perfect integer sequence there are only N variables. Thus,
the methods in [2]-[4], [6]-[10], [12], [13] may not work
well. In this paper we will reveal a novel method to solve
this problem.

The benefits of our work can be summarized as follows.

 Integer ZAC can be constructed. In applications such as

communication, transmitting integer instead of Gaus-
sian integer can save the bandwidth.

 Suitable for arbitrary length.

e Closed form solution.

The remaining of this paper is organized as follows.
Some useful notation and definition are given in Section II.
Some related works are reviewed in Section III. The main
result will be revealed in Section IV. Some extensions are
introduced in Section V. The conclusion is in Section VI.

II. PRELIMINARY RESULTS

Let 2(n) be a sequence with length N and Wy be e~
The discrete Fourier transform (DFT) of x(n) is defined as
N-1
Z(m) = Z x(n)Wy™ ()
n=0
where n,m € 0,1,2,...,N — 1. And the inverse discrete
Fourier transform (IDFT) of Z is

1 N-1

x(n) = N

T(m)Wy™" 2)
0

which is denoted by F {z} = & and F~! {2} = z.
Let 6(n) be the delta function such that

n=~0

sw={ ¢ r %0 3)

And we can define constant amplitude (CA) and zero
autocorrelation (ZAC) as follows.

Definition A sequence x(n) is constant amplitude (CA) if
|z(n)] = A “)
for some constant A

Definition A sequence x(n) is zero autocorrelation (ZAC)

if
N-1

Z z*(n —m)x(n) = Cd(m) )

n=0

for some constant C', where x* is the complex conjugate of
x

An useful theorem about CA and ZAC is given as follows.

Theorem IL.1. A sequence x is CA if and only if its DFT
z is ZAC. Similarly, a sequence x is ZAC if and only if its
DFT % is CA.

Proof. See [20] L]

A Gaussian integer is a complex number a -+ bi while both
a and b are integers.

Definition A perfect Gaussian integer sequence is a ZAC
sequence such that each value in the sequence is a Gaussian
integer. Similarly, A perfect integer sequence is a ZAC
sequence such that each value in the sequence is an integer.

Example
[—2,3, 6]

is a perfect integer sequence.
Example

[3—3i,1,1 41, 2i]
is a perfect Gaussian integer sequence.

III. REVIEW ON OTHER METHODS

For any length NN, there are two trivial perfect integer
sequences [5]

z(n) = [1,0,0,0, ...,0] (6)
z(n) =[N —2,-2,-2,-2,..,—2] 7)
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Moreover, if N is even, the following sequence is also a
perfect integer sequence.
S22 n=20

" ={ Zyr g0

We will generalize these trivial cases to obtain a surprisingly
simple method to construct perfect integer sequence in
Section IV.

For most other methods, the main concept to generate
perfect integer or Gaussian integer sequences x(n),n =
0,1,2,..., N — 1 of length N is based on categorization.
The index n is categorized into many classes, and the value
of sequence x(n) is dependent on the class n belongs. For
example, in [2], one of the base sequences y is defined as

N—=2

®)

1 n=0 mod4
7 n=1 mod4

y2 = —1 n=2 mod4 ®)
—i n=3 mod4

The base sequence can be linearly combined with other base
sequences to generate perfect Gaussian integer sequence.
The categorization method is not unique. In [3], the

sequence length N = p where p is a prime number. All the
nonzero index n # 0 is thus mapping into cyclic subgroup
of the Galios field GF(p). A concrete example is p = 13
with primitive root 2. The cyclic subgroup of GF(13) is

20=1

22 =4

2*=16=3 mod 13

20 =64=12 mod 13

28 =256=9 mod 13

210 =1024=10 mod 13

The sequence is then constructed by

a n=0
z(n)=< ap n=1,3,4,9,10,12
a1 otherwise

(10)

with carefully designed Gaussian integer ag, a; and az. A
numerical example can be found as the Example 2 in [3].
The main drawback of the above methods is that they cannot
applied to construct perfect integer sequences.

In [5], another categorization method is used. Let
gcd(N,n) be the greatest common divisor of N and n.
And let dq,ds,...,d; be all divisor for N. The index in
the frequency domain (by taking discrete Fourier transform,
DFT) is categorized by gcd(N,n) = ds, s = 1,2,...,¢t.
The result is equal to the summation of the circular shifted
Ramanujan’s Sum. Some non-trivial perfect integer se-
quence can be formed. A concrete example is N = 6
and dy = 6,ds = 3,d3 = 2,dq4 = 1. The perfect integer

sequence may be
.’I}(’I’L) = [071a3745_37 1} (11)

Although this method can generate non-trivial perfect inte-
ger sequences, it can only applied to composite length. In

other words, when NN is a prime number, the method only
gives trivial solutions.

The difference set and its application on low correlation
code have been studied for decades [15]-[19]. However,
these results have not applied to generate perfect Gaussian
integer sequences until [8]. The method is similar to others
by determining a difference set D which is a subset of
{0,1,2,..., N — 1}. Then the sequence can be formed as

neb

a1 otherwise (12)
with carefully designed Gaussian integer ag and a;. The
advantage of the difference set method is that the sequence
is binary, which means only two kinds of value ay and a;
are used. The main drawback of this method is that not every
length N has a difference set.

IV. PERFECT INTEGER SEQUENCES BY GEOMETRIC
SERIES

Observe Equations (6) to (8), we can find two interest
things. The first is that only the element x(0) is different
from the others. The second is that each z(n), n # 0 forms a
geometric series. In Equation (6), [0,0, ..., 0] can be viewed
as geometric series with any ratio r. In Equation (7), the
ratio 7 = 1 while in Equation (8), the ratio r = —1.

Another example can be found in N = 4. The closed
form solution for perfect integer sequence is

b2
{—b, a,b, }
a

where a, b, % are integers. This is solved by brute force. The

(13)

2 . .
last three terms {a, b, %} can also be viewed as geometric

series, with ratio r = 2

From the observation above, a natural assumption is that
any geometric series can be used to generate perfect integer
sequence. With some calculation the assumption can be
proved. The result is given as follows. Let r be an integer.
A closed form perfect integer sequences is given as

z(n) = _k;’“k n= (14)
(1+r)r™ n#0

Note that z(n) is a geometric series fromn = 1 to N —1.
Since r = 0 or 7 = £1 gives only trivial result, from now
on only the cases r # 0, -1 are discussed.

For a concrete example, let N =5 and r = 2

[—(22 4+ 23 +2%),3-21,3.2%,3.2% 3. 2% (15)
= [-28,6,12, 24, 48] (16)
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For another example, let N =6 and r = —3
=Y (-3)*
(o (o
= () (o 0
(=2)- (= 3)4
(=2)- (=3)°
= [180, 6, —18, 54, —162, 486] (18)

The two examples above illustrate that both prime length
N = 5 and composite length N = 6 can be used. In fact,
there is no limitation on signal length.

To prove Equation (14), by Theorem II.1 we should check
that £ is CA. By definition,

N—-1
Z(m) = x(n)Wx™ (19)
n=0
N—-1 N—-1
S Z Y (A 4 )W (20)
k=2 n=1
N-1
= (— r’“) — (147 +1+7)
k=2
N-1
+(1+7) r" W™ (21)
n=1
N—-1 N—-1
== > rFr ) > (22)
k=0 n=0
1—rN 1— (rWm)N
- @3)
N
1—rN 1—rN
=y PO 29
N

1 1
=(1 11— — 25
L+ =r )<1—rw;y 1—7“2> )
To prove % is CA, the following lemma is needed.

Lemma IV.1. For any complex number z = re'®, where

Thus, let Q = 1 — 2r cos(#) + r?
2

1 1
‘l—reio - 30)
(1 —rcos(f) 1 2 rsin(6)\ >
(5 -2=) (797 b
(1 —rcos(9))? 1 —rcos(0) 1 72 sin?(6)
T Ton-m Tu-ept @
(32)
Note that (1 — 7 cos(#))? + r2sin?(0) = Q
1 1P
‘l—re“’_ 1—1r2 (33)
_Q  _1-—rcos(d) 1
N I oY
10 1 —rcos(f) 1
RO v e B (e, o
=1+ 2rcos(d) — r? 1
I IR o
o -Q 1 1-(1-r?) ro\
g e e ()
(37)
which completes the proof. O

We can now prove z(n) in Equation (14) is ZAC. By (25)
and Lemma IV.1,

R _ N 1 _ 1
[Z(m)|=|1+r)(1—r )(ITW]’\? 17’2)‘ (38)
B Ny, 1 B 1
~10+00 =) |~ 12| @9
B r(1+7)(1—7rN) B r(1—rN)
- 1—r2 ’ 1—r ‘ 0

z| is constant when 7 is fixed. Thus, Z is
CA and by Theorem II.1, x is ZAC.

V. SOME EXTENSIONS ON THE PROPOSED METHOD
D

r=|z| #1, A. Other perfect integer sequences by rational r =
1 1 Although in the Equation (14) r is assumed to be an
‘ — 5| = ‘ " 5 (26) integer, the assumption can be extended to any rational
l-z 1-r 1—r number r = g. The result sequence will be rational and
In other words, the magnitude of— . 1T2 only depends €0 become an integer sequence by multiplying the least
on r and is independent from 0. common multiple (lcm) of the denominators. For example,
let r = % and N = 5, Equation (14) becomes
Proof. _ -
4
1 1 1 1 Ypoa(3)
L—rei® 1—72  1—rcos(d)+irsin(f) 1—r2 S (3
@7 2= | 32 (4D)
1 —rcos(f) — irsin(0) 1 28) . o
(1 —rcos(0))® +r2sin?(f) 1—r2 3:(3)
_ 1 —rcos(0) B 1 _; 7 8in(0) I % . (%)4 ]
1—2rcos(d)+12 1—12 1 —2rcos(9) + r2 _ [—76 10 20 40 80 80, “2)
(29) 8192781 243
ISBN 978-90-827970-1-5 © EURASIP 2018 1269
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The lem of the denominator is 243. Thus, the final perfect
integer sequence becomes

x(n) = [—228, 270, 180, 120, 80] (43)
For another example let r = %2 and N =5,
- SR
@)
z(n) = % . (%2)2 (44)
e
RS A
= 2 5 o] (45)

81 ' 9 27 81’243
The lcm of the denominator is 243 again. Thus, the final
perfect integer sequence becomes

z(n) = [—84, —54, 36, —24, 16] (46)

B. Perfect Gaussian integer sequences by geometric series

One natural extension to the Equation (14) is setting r as
a Gaussian integer a + bi. However, the formula needs to be
modified since when 7 is complex, |r?| # 2, so Lemma IV.1
is no longer suitable. Luckily the idea of geometric series
still works. Let 2(0) = 21 + 24 , it is not hard to prove
that

N—l]

T = [x(O),r,r2,r37...,r 47

has a solution for any r = a + bi, |r| # 1. The proof is
similar to the proof of Lemma IV.1 so we omit it here. As
a concrete example, let r =1+ ¢ and N = 5,

x =[xy + 20i, 1 414,20, —2 + 2i, —4] (48)

In order to construct ZAC sequence, by definition from
Equation (5), the following equation must be satisfied.

(X1 — @2i) (1 +14) + (1 —4)2i + (—2i)(—2 + 2i)
+(—2 = 20)(—4) + (-4)(z1 + 221) =0
The equation above can be rearranged by real part and
imaginary part.

(49)

(—31‘1 + o + 14) + i(.’L‘l — 5x9 + 14) =0 (50)

The unique solution of the above equation is ;1 = 6 and
x9 = 4. The result perfect Gaussian integer sequence is

x=1[6+4i,1+41i,2i,—2+ 2i, 4] (51)

C. Generating another perfect integer sequence by a given
one

If we compare Equation (25) and Lemma IV.1, we can
discover that Equation (25) is a special case when the 6 in
Lemma IV.1 is equally spaced, that is,

—2tm
N
This constraint is unnecessary and we will see how to extend
Lemma IV.1 and construct another perfect integer sequence
by a given one.

9:

(52)

Let 2(n) be a perfect integer sequence with length N.
Define the associate polynomial of z, f,(z) as

N-1

L) = Y aln)z

n=0

Clearly by definition f, (W) = &(m), and since = is ZAC,
Z is CA. In other words,

[f-(Wy)|=C

(53)

(54)

for some constant C' and any integer m. Note that C' =
LWl = 1£()] = |5 @(m)| and @ is an integer
sequence, C' must be an integer.

The idea to construct new perfect integer sequence is that
[ (W) can be viewed as Ce' and although WX must
be equally spaced in phase, the phase of f,(W}') may
be not. Thus, from another point of view, f,(z) can be a
generalization to z. However, there is an inverse (1 — 2)7!

in Lemma IV.1 and the following lemma shows the inverse
(1— fu(2))"" exists.

Lemma V.1. Let x(n) be a perfect integer sequence with
length N, f.(z) be the associate polynomial of x and C =
|fo(D)|. If C # 1 then 2N —1 and 1 — f,(2) are coprime. In
other words, zN —1 and 1 — f,(z) have no common divisor
d(z) such that the degree of d(z) is greater than 0.

Proof. (By contradiction)
Let d(z) be the common divisor of 2~ —1 and 1 — f,(z).
Thus, there are g(z) and h(z) such that
2N 1= h(2)d(2)
1= fa(2) = g(2)d(2)
Since the N roots of zN — 1 are 1, Wy, W3, ..., W !
and d(z) is non zero degree polynomial, there must be
some W&, k € {0,1,...,N — 1} such that d(W}) = 0.
Equation (56) becomes

L= f(WR) = g(Wx)d(Wy) = 0

= |f (W) =1

(55)
(56)

(57)
(58)

However by Equation (54) C' = | f,(WR)| for any integer
m. Thus C' = 1 which contradicts the assumption C' #
1. O

Corollary V.2. Under the same assumptions in the above
lemma. There are rational coefficient polynomials g,(z) and
he(2) such that

(ZN = Dha(2) + (1 = fu(2)) g2(2) = 1

Proof. This is the well-known Bezout’s lemma [21]. More-
over, these polynomials can be calculated by Extended
Euclidean algorithm. O

(59)

We can construct another perfect sequence by x.

Theorem V.3. g,(z) — 1=z is an associate polynomial to
a rational ZAC sequence.
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Proof. By Corollary V.2 and let z = W37,
(WY = Dha (W) + (1= fo(WE)) g2(WR) =1

(60)
=0-he (W) + (1 = fo(WR')) g.(WR') = 1 (61)
" 1| 1 1
= 19:(WX) = 7= _‘1—fx(W;V") T1-c2
(62)
C
= ’1 — (63)
The final equation is due to |f,(WJ)| = C and

Lemma IV.1. Thus, the sequence associate to the polynomial
92(2) — =5z is ZAC because its DFT is CA, which
completes the proof. O

The perfect integer sequence x is not necessary con-
structed by the method proposed in Section I'V. For example,
let N=7and x =[0,-1,1,1,0,1,0]

1—fu(z)=—2" =23 =22+ 241 (64)

By Bezout’s lemma [21] we can find

1
ha(2) = = (92* — 212% — 132% — 82 — 85)

1
9o(z) = = (92° — 212° — 222" + 42° — 3327 + 62 — 14)

-
ha(2)(2" = 1) + g2 (2)(1 = fa(2)) = 1
Also note that C' = |f,(1)| = 2 thus

1
9a(2) — 1_C2

1 1
== (92° — 212° — 222" +42° — 332% + 62 — 14) + 3
(65)

1
=513 (2725 — 632° — 662* + 122° — 9927 + 182 + 29)
(66)

And we can easily check that
(29,18, 99,12, —66, —63, 27

is a perfect integer sequence. To the authors’ knowledge,
this sequence cannot be found by any previous work.

In the next example let N = 6 and = = [0, 3,0, 3,0, 52].
Note that we can scale x by any rational number in order to
make C = |f.(2)| # 1. The calculation is skipped and the
result perfect sequence is [—26, —4, —20, —16, 4, 20]. These
two examples illustrate that the method works for both prime
length N = 7 and composite length N = 6. In general, the
proposed method will work for any length.

VI. CONCLUSION

In this work a novel method to construct perfect integer
sequences is revealed. Unlike other methods which is based
on index categorization, this method is based on geometric
series and can work on arbitrary signal length. The result
can extend to complex number in order to generate perfect

Gaussian integer sequence. When proving the sequence
is perfect, a generalization has been discovered. The new
method can generate another perfect sequence by a given
one.
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