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Abstract—Energy constraint is always a bottleneck in a dis-
tributed wireless sensor network (WSN). Online censoring is
an effective approach to reduce the overall power consumption
by only transmitting statistical informative data. However, in-
dividual sensor may still suffer from energy shortage due to
frequent transmission of informative data or geographical long
distance transmission. In this paper, we consider the parameters
estimation problem in WSNs, where the goal is to minimize
the estimation error while keeping the network lifetime long. A
distributed censoring algorithm is developed, which allows sensor
nodes to make autonomous decisions on whether to transmit the
sampled data. We show that with the proposed algorithm, the
network lifetime extends and approaches to its theoretical limit,
and the performance loss in terms of the estimation error is
minimal. Simulation results validate its effectiveness.

Index Terms—Wireless sensor networks, censoring, network
lifetime.

I. INTRODUCTION

Emerging technologies, such as the Internet of Things, smart

appliances, smart grids, and machine-to-machine networks

stimulate the deployment of autonomous, self-configuring,

large-scale wireless sensor networks (WSNs). Since in many

applications, sensor nodes are operated based on battery power.

Efficient energy utilization is crucial in order to maintain a

fully functional network [1].

There are considerable efforts in the literature dealing

with the power consumption reduction and network lifetime

extension in WSNs. In [2] [3], authors developed a routing

algorithm to find the optimal route from the sensor node to

the sink node from the energy perspective. Authors in [4]

formulated the network lifetime maximization as a convex

optimization problem encompassing routing, scheduling, as

well as the transmission rate. Offloading data to other sensors

was considered in [5] and [6] to prolong the network lifetime.

Network coding has been shown to be able to enhance the

energy efficiency, hence improving the network lifetime [7].

The above works take all sampled data into consideration,

while reducing the data transmission can be an effective

way to reduce the energy consumption [8]. Censoring was

recently employed to select only the informative data for
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transmission in energy-constrained WSNs. Authors in [9] and

[10] confirmed that estimation accuracy of censored data could

be comparable to that based on uncensored data. In [11]

and [12], authors investigated the distributed measurement

censoring method for estimation in WSNs, where each sensor

node could make censoring decision individually, but such

algorithm ignored the energy cost associated with censoring.

In our recent work [13], we considered the adaptive censoring

from the energy perspective. With our censoring algorithm, the

overall energy consumption of WSNs could be reduced, while

the performance loss was negligible. However, this algorithm

did not consider the energy status of each individual sensor

node, hence could not fully optimize the network lifetime of

WSNs.

In this paper, we extend our work to develop the optimal

estimation algorithm while keeping the network lifetime long.

In this work, we consider the parameters estimation problem

in WSNs consisting of a fusion center (FC) and a set of sensor

nodes. The sensor nodes are battery powered, thus suffering

from the energy constraint. We propose a distributed censoring

method, which takes the remaining energy of each sensor node

into account. We show that with the proposed algorithm, the

network lifetime extends and approaches to the theoretical

limit, and the estimation error is minimal.

The rest of this paper is organized as follows. Section II

introduces the system model and problem formulation. The

proposed censoring approach with network lifetime constraint

is presented in Section III. Section IV shows the simulation

results, and Section V concludes the paper.

Notations: Lower-(upper-) case boldface letters denote col-

umn vectors (matrices). Calligraphic symbols are reserved

for sets and vector I denotes the identity matrix. φ(t) =
(1/

√
2π) exp(−t2/2) denotes the standardized Gaussian prob-

ability density function and Q(z) =
∫ +∞
z

φ(t)dt denotes the

associated complementary cumulative distribution function.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a WSN with K sensor nodes {Sk}Kk=1 randomly

deployed over a geographical area. A scalar measurement of

sensor node k at time slot t is assumed to obey the linear

model [12]

y∗tk = hT
tkθ + vtk, (1)
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where k = 1, 2, . . . ,K, t = 1, 2, · · · , T , θ ∈ Rp is the vector

of unknown parameters, and p is the length of θ. The regressor

htk is known at the FC, and vtk denotes uncorrelated, zero-

mean, Gaussian distributed noise. Without loss of generality,

we assume that the noise variance is σ2 for all K sensors in

each time slot t.
Network lifetime is a critical metric in the design of energy-

constrained WSNs. We assume that the sensor nodes are

battery powered thus suffer from the energy constraint, while

the FC has its own power supply and is free of energy

limitation. The lifetime Tk of node k is defined as the number

of time slot until the energy of node k is exhausted. We define

the lifetime T of the network as the time when the first sensor

is drained of its energy, in other words, the system lifetime T
of a sensor network is the minimum lifetime of all nodes in

the network [14]

T = min {T1, T2, · · · , TK} , (2)

Data censoring can be applied to reduce the number of ob-

servations adopted for estimation, hence prolong the network

lifetime. With R denoting the censoring interval, a generic

censoring rule to select data in (1) is given by

ytk =

{
�, if y∗tk ∈ R,
y∗tk, otherwise.

(3)

where � denotes an unspecified value. If y∗tk ∈ R, the value

of y∗tk is censored and we only know that ytk ∈ R; otherwise,

the exact measurement ytk = y∗tk is obtained [10].

Fig. 1 illustrates the data censoring in WSNs. During each

time slot, instead of transmitting all observations, only a subset

of sensor nodes is selected for transmission.

Fusion center

Censoring sensor

Uncensoring sensor at t=1

Uncensoring sensor at t=2

Uncensoring sensor at t=3

Fig. 1. Data censoring in WSNs.

The rule of selecting sensor nodes is to minimize the

estimation error over all possible selections. We assume that

htk, σ2 are available at the FC, since such information can

be learnt from the nature of the problem or acquired during a

training phase [13].

In WSNs, the energy consumed by the transceiver and the

signal processing unit can be considered as a constant. The

energy dissipated is approximately εelec = 400 nJ/byte to run

the transmitter or receiver circuitry. The energy consumption

by the power amplifier during the transmission, on the other

hand, greatly depends on the Euclidean distance dk between

the sensor node k and the FC. A simplified model of energy

consumption per byte of the power amplifier is εampd
2
k, where

εamp = 800 pJ/byte/m2 [15]. As the data received and

transmitted are usually short messages, we assume that the

data length of the packet is m bytes for both transmitter

and receiver. Thus, the total transmitting energy consumption

would be Emk = mεelec+mεampd
2
k, the total receiving energy

consumption is Erk = mεelec [14]. To simplify notations,

we normalize the power consumption in each reception and

transmission by the maximum transmission power, i.e.,

Emk =
Emk

max(Em1, Em2, · · · , EmK)
, (4a)

Erk =
Erk

max(Em1, Em2, · · · , EmK)
. (4b)

During each time slot t = 1, · · · , T , each sensor node k
must make a decision stk about whether to transmit its current

measurement. We set stk = 1 if the observation is transmitted,

while stk = 0 if discarded. The selection variable stk can be

obtained by solving the following optimization problem

stk = argmin
stk∈{0,1}

T∑
t=1

K∑
k=1

(y∗tk − stkh
T
tkθ)

2 (5a)

s.t. TErk +

T∑
t=1

stkEmk ≤ Ek, for k = 1, · · · ,K (5b)

where Ek is the total energy of sensor node k. The goal of

optimization problem (5) is to minimize the estimation error

under the network lifetime constraint. In the next section, we

propose a distributed censoring algorithm for (5).

III. PROPOSED DISTRIBUTED CENSORING ALGORITHM

WITH NETWORK LIFETIME CONSTRAINT

During each time slot t, all sensors receive θ̂t−1 broadcast

by FC, where θ̂t−1 denotes the estimation of θ after time slot

t− 1, which is initialized as

θ̄ =

( L∑
k=1

htkh
T
tk

)−1 L∑
k=1

y∗tkhtk, (6)

where p < L � K [9].

To deal with the optimization problem (5), the remaining

energy of each sensor node at each time slot should be

considered. Sensors deplete their batteries according to the

actions stk [16]. The available energy E(t, k) of sensor node

k at time slot t can be expressed recursively as [8]

E(t, k) = E(t− 1, k)− stkEmk − Erk, (7)

where E(t, k) is initialized as E(0, k) = Ek, Erk denotes the

energy consumed by receiving θ̂t−1, and Emk denotes energy

consumed by transmitting the measurement y∗k.

In order to achieve the required network life T , the proba-

bility of transmission ρtk for sensor node k at time slot t is

given by

ρtk =

⌊
E(t,k)−(T−t)Erk

Emk

⌋
T −Dk

, (8)
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where �·� denotes the round down operation, and

Dk =

{
t, if stk = 1,
Dk, otherwise.

(9)

where Dk is initialized to 0 for each sensor node. Clearly, ρtk
changes only if stk = 1.

In order to achieve desired transmission probability ρtk, the

censoring threshold should be updated accordingly [9]

τtk =

[
p

(n− 1)ρtk
+ 1

]1/2
Q−1

(ρtk
2

)
. (10)

To simplify calculation, the threshold τtk = Q−1 (ρtk/2) can

be used as a rough approximation to achieve the censoring

ratio. Then

τtk =

⎧⎨
⎩

0, if ρtk ≥ 1,
Q−1 (ρtk/2) , if 0 < ρtk < 1,

∞, if ρtk ≤ 0,
(11)

where ρtk ≥ 1 means that the remaining energy of sensor node

k is enough to support the transmission in every remaining

time slots, and ρtk ≤ 0 indicates that sensor node k can not

complete one transmission with the reserved energy.

Supposing that the threshold τtk and estimation θ̂t−1 are

available at each sensor, censoring can be implemented au-

tonomously at each sensor with the following rule [9]

(ytk, stk) =

{
(y∗tk, 1), if

∣∣∣y∗
tk−hT

tkθ̂t−1

σ

∣∣∣ ≥ τtk,

(�, 0), otherwise.
(12)

Algorithm 1 Censoring with Network Lifetime Constraint

Require: FC knows {htk}Kk=1; Sk knows htk, y∗tk, Ek, T
1: initialize n = 1, θ̂0 = θ̄, C0 = εI
2: for t = 1, 2, · · · , T do
3: FC: Broadcasts θ̂t−1

4: for k = 1, 2, · · · ,K do
5: Sk: Receives θ̂t−1, obtains τtk, ytk and stk from

6: (11), (12), updates E(t, k)
7: if E(t, k) < 0 then
8: return
9: end if

10: end for
11: for k = 1, 2, · · · ,K do
12: FC: Updates Cn and θ̂n using (13), n ← n+ 1
13: end for
14: FC: θ̂t ← θ̂n
15: end for
16: FC: Set θ̂ = θ̂t

Applying recursive least squares (RLS) algorithm in FC

with the censoring rule, yields

Cn =
n

n− 1

[
Cn−1 − stkCn−1htkh

T
tkCn−1

n− 1 + hT
tkCn−1htk

]
, (13a)

θ̂n = θ̂n−1 +
stk
n

Cnhtk(ytk − hT
tkθ̂n−1), (13b)

where Cn is typically initialized as C0 = εI for small positive

ε [10]. Note that θ̂n is the estimation result of each iteration,

while θ̂t is the estimation result of each time slot.

In the proposed algorithm, the remaining energy of each

sensor node is considered in the data censoring process.

The censoring threshold τtk increases as the reserved energy

E(t, k) decreases, which means that the transmission prob-

ability ρtk becomes smaller and only more informative data

may be transmitted. The lifetime of each sensor node extends,

so does the overall network lifetime.

The computation and communication steps that constitute

censoring are tabulated as Algorithm 1. During each time slot

t, FC broadcasts θ̂t−1 to all K sensors. Each sensor Sk au-

tonomously decides its threshold τtk, and makes the censoring

independently according to (12). The available energy of each

sensor node is updated at each time slot. Parameters estimation

is performed in FC with RLS algorithm.

IV. NUMERICAL RESULTS

In this section, we examine the proposed distributed cen-

soring method with network lifetime constraint. Simulations

are done for the model in (1) with K = 100 and SNR=30

dB. The regressors htk and parameters vector θ are picked

uniformly over [−1, 1] with dimension p = 10. During all the

simulations in this paper, there are K sensor nodes randomly

deployed in 1 km × 1 km area, the FC is located at (0.5 km,

0.5 km), and the energy of each sensor node is initialized as

Ek = 100.
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N
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NMSE of censoring
NMSE of random selection
NMSE of all data
NMSE of the proposed algorithm
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2

10-3

Fig. 2. NMSE of the proposed algorithm compared with different algorithms.

In the first experiment, we would like to check the algorithm

performance in terms of modeling accuracy, which is defined

as normalized mean-square error (NMSE = ||θ̂t−θ||2/||θ||2).

The NMSE performance of the proposed algorithm compared

with different algorithms is shown in Fig. 2, where T = 5000,

the x-axis and y-axis represent time slot and NMSE, respec-

tively; the green dashed line shows the NMSE of randomly

selected method; the red solid line reveals the performance

of the proposed algorithm; the blue dashed line indicates the
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performance of censoring method, which selects the most

informative part of all measurements at each time slot; and

the black dashed line represents the NMSE performance of

all data method.

As shown in Fig. 2, the NMSE of all data method bench-

marks the performance of other methods but the network life-

time is only 100, because each sensor node must transmit its

measurement at each time slot. The performance of randomly

selected method is not satisfactory in both estimation error and

expected network lifetime, since the method does not consider

both the estimation performance and energy. The proposed

method performs slightly worse than censoring method at the

beginning, but realizes the highest estimation accuracy in the

end, and achieves the network lifetime constraint T = 5000.
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N
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NMSE (T=5000)

Fig. 3. NMSE of the proposed algorithm with different T s.

Next, we study the NMSE performances of the proposed

algorithm with different expected lifetimes. As shown in Fig.

3, the blue dashed line, the green dashed line and the red

solid line indicate the convergence of the proposed algorithm

with T = 1000, T = 3000 and T = 5000, respectively. We

observe from Fig. 3 that the larger T is, the slower convergence

speed achieves. The result is expected as larger T suggests that

smaller number of sensors is selected in each round. On the

other hand, longer battery life is achieved with larger T . The

estimation error of the blue curve is large comparing to the

other two cases as the estimation has not converged yet when

the network dies.

In Fig. 4, we show the remaining energy of each sensor

node when the target network life is achieved, where the x-axis

and y-axis represent the time slot and the remaining energy,

respectively; the blue mark ”+”, the green mark ”◦” and the

red mark ”×” represent the remaining energy of each sensor

node with T = 1000, T = 3000 and T = 5000, respectively.

From Fig. 4, we observe that the remaining energy is nearly 0
for most sensor nodes in all cases. The larger T is, the more

nodes nearly deplete their energy. The results indicate that the

proposed algorithm indeed can extend the network life.

In the third simulation, we would like to verify the conver-
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Fig. 4. Remaining energy of the proposed algorithm with different T s.

gence performance of the proposed algorithm with another dis-

tribution, where htk is a standard Gaussian random variable.

The legends of Fig. 5 are the same as Fig. 3’s. We observe that

the proposed method achieves the theoretical network lifetime,

and has similar convergence performance compared with Fig.

3. Therefore, the proposed algorithm is robust and can be

applied to other distributions.
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Fig. 5. NMSE of the proposed algorithm with standard Gaussian distribution.

V. CONCLUSIONS

In this paper, a distributed censoring method with network

lifetime constraint for parameters estimation in WSNs is

explored. The remaining energy is considered in the data

censoring process, where the transmission probability becomes

smaller and only more informative data may be transmitted

as the reserved energy of each sensor node decreases. The

proposed algorithm extends the network lifetime with little

estimation performance loss. Simulations show that the pro-

posed algorithm achieves a good trade-off between estimation

accuracy and network lifetime.
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