
Roundoff Noise Analysis for Generalized
Direct-Form II Structure of

2-D Separable-Denominator Digital Filters
Takao Hinamoto

Hiroshima University
Higashi-Hiroshima 739-8527, Japan

Email: hinamoto@ieee.org

Akimitsu Doi
Hiroshima Institute of Technology

Hiroshima 731-5193, Japan
Email: doi@cc.it-hiroshima.ac.jp

Wu-Sheng Lu
University of Victoria

Victoria, BC, Canada V8W 3P6
Email: wslu@ece.uvic.ca

Abstract—Based on the concept of polynomial operators,
generalized direct-form II structure of two-dimensional (2-D)
separable-denominator (SD) digital filters is explored. It is shown
that 2-D SD digital filters can be modeled by a generalized SIMO
direct-form II and a generalized MISO transposed direct-form
II that are connected in cascade. Then an expression for the
roundoff noise gain in the resulting structure is derived and
investigated. Moreover, the roundoff noise gain is compared with
that deduced in a recent study of generalized direct-form II
realization of 2-D SD digital filters.

I. INTRODUCTION

In the past decades, delta operator has widely been used in
the realization of digital filters to improve finite-word-length
(FWL) performance in systems with high sampling rate [1]-
[5]. Li and Gevers have studied the roundoff noise gain for the
delta-operator state-space realization of a transfer function and
under what conditions the roundoff noise gain for the optimal
delta-operator realization is smaller than that for the optimal
shift-operator realization [1]. In [2], the filter was expressed
by second-order sections connected in cascade, each section
was implemented with a direct form in delta operator, and
different direct forms in the delta operator were extensively
compared. In [3], the concept of separately scaling the ∆s
and filter coefficients in the delta transposed direct-form II
section was proposed to globally further minimize output
roundoff noise gain, as compared to selecting a single optimal
∆ only. In [4], a method for obtaining an optimal arbitrary-
order delta-operator direct-form II transposed filter has been
presented in terms of the roundoff noise gain and coefficient
sensitivity. Based on the concept of polynomial operators, a
new structure which is considered a generalization of the shift
operator z-based direct-form II transposed structure has been
explored for digital filter implementation [5]. Alternatively,
due to their desirable properties and ease of stability test,
2-D SD digital filters have been widely studied as a very
popular class for multidimensional signal processing in the
past [6]-[12]. Recently, generalized direct-form II state-space
realization of 2-D SD digital filters has been constructed, and
an expression for the roundoff noise, an l2-scaling method to
avoid overflow, and a way to minimize the roundoff noise gain

with respect to free parameters subject to l2-scaling constraints
have been examined [13].

In this paper, we present a detailed roundoff noise analysis
for generalized direct-form II structure of 2-D SD digital filters
using a different approach from [13]. The roundoff noise gain
is compared with that deduced in a recent study of generalized
direct-form II state-space realization of 2-D SD digital filters
in [13].

II. STRUCTURE OF 2-D DIGITAL FILTERS

Consider a 2-D stable SD digital filter of order (m,n)
described by

H(z1, z2) =

m∑
k=0

n∑
l=0

cklz
−k
1 z−l

2(
1 +

m∑
k=1

akz
−k
1

)(
1 +

n∑
l=1

blz
−l
2

) (1)

where the denominator and numerator are assumed to be co-
prime. Let P 1 and P 2 be (m+1)×(m+1) and (n+1)×(n+1)
nonsingular matrices, respectively, defined by[

qh0 (z1) qh1 (z1) · · · qhm(z1)
]T

=P 1

[
zm1 · · · z1 1

]T[
qv0(z2) qv1(z2) · · · qvn(z2)

]T
=P 2

[
zn2 · · · z2 1

]T
(2)

Next, scalars {αk| k = 1, 2, · · · ,m}, {βl| l = 1, 2, · · · , n} and
{rkl| k = 0, 1, · · · ,m; l = 0, 1, · · · , n} are defined so that

κ1 [1 α1 α2 · · · αm]P 1 = [1 a1 a2 · · · am]

κ2 [1 β1 β2 · · · βn]P 2 = [1 b1 b2 · · · bn]

κ1κ2P
T
1

 r00 · · · r0n
...

. . .
...

rm0 · · · rmn

P 2 =

 c00 · · · c0n
...

. . .
...

cm0 · · · cmn


(3)

From (1)-(3), the transfer function in (1) can be expressed as

H(z1, z2) =

m∑
k=0

n∑
l=0

rklq
h
k (z1)q

v
l (z2)

m∑
k=0

αkq
h
k (z1)

n∑
l=0

βlq
v
l (z2)

(4)
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where scaling factors κ1 and κ2 are determined by requiring
α0 = 1 and β0 = 1. We now define

ρhk(z1) =
z1 − γk
∆k

for k = 1, 2, · · · ,m

ρvl (z2) =
z2 − γ̂l

∆̂l

for l = 1, 2, · · · , n
(5)

where {γk}, {γ̂l}, {∆k > 0} and {∆̂l > 0} are four sets of
constants [13] and polynomial operators are chosen as

qhk (z1) = ρhk+1(z1)ρ
h
k+2(z1) · · · ρhm(z1), k=0, 1, · · · ,m−1

qvl (z2) = ρvl+1(z2)ρ
v
l+2(z2) · · · ρvn(z2), l=0, 1, · · · , n−1

(6)
and qhm(z1) = qvn(z2) = 1. Using (5), we can specify the
corresponding transformation matrices P 1, P 2 and scalars
κ1 = ∆1∆2 · · ·∆m, κ2 = ∆̂1∆̂2 · · · ∆̂n. Making use of (6),
the transfer function in (4) can be written as [13]

H(z1, z2) =

m∑
k=0

n∑
l=0

rkl

k∏
p=0

ρhp(z1)
−1

l∏
q=0

ρvq(z2)
−1

( m∑
k=0

αk

k∏
p=0

ρhp(z1)
−1

)( n∑
l=0

βl

l∏
q=0

ρvq(z2)
−1

)
(7)

where α0 = β0 = 1 and ρh0 (z1)
−1 = ρv0(z2)

−1 = 1.
The implementations of ρhk(z1)

−1 and ρvl (z2)
−1 are de-

picted in Fig. 1. As an illustrative example, the structure of
(7) for a 2-D filter with (m,n) = (3, 3) is depicted in Fig. 2
where u(i, j) is a scalar input and y(i, j) is a scalar output.

Fig. 1. (a) Implementation of ρhk(z1)
−1 and (b) that of ρvl (z2)

−1.

Fig. 2. The 2-D filter structure of (7) with (m,n) = (3, 3).

From Figures 1 and 2, we deduce

y(i, j) = w1(i, j) + r00

[
u(i, j)−

n∑
l=1

βlx
v
l (i, j)

]
+

n∑
l=1

r0lx
v
l (i, j)

wk(i, j) = ρhk(z1)
−1

{
wk+1(i, j) +

n∑
l=1

rklx
v
l (i, j)

+rk0

[
u(i, j)−

n∑
l=1

βlx
v
l (i, j)

]
− αky(i, j)

}
(8)

for k = 1, 2, · · · ,m where wm+1(i, j) = 0. In addition,

xv1(i, j + 1)= γ̂1x
v
1(i, j) + ∆̂1

[
u(i, j)−

n∑
l=1

βlx
v
l (i, j)

]
xvl (i, j + 1)= ∆̂lx

v
l−1(i, j) + γ̂lx

v
l (i, j)

(9)
for l = 2, 3, · · · , n.

We note that the model in (7) contains 2(m+n)+ (m+1)
·(n + 1) nontrivial parameters {αk}, {∆k}, {βl}, {∆̂l} and
{rkl} plus m+ n free parameters {γk} and {γ̂l}.

III. ROUNDOFF NOISE ANALYSIS

We begin by examining the roundoff noise caused by the
term αky(i, j) for 1 ≤ k ≤ m at the output. Due to the
product quantization, for the actual filter implemented by a
FWL system, (8) can be written as

ỹ(i, j) = w̃1(i, j) + r00

[
u(i, j)−

n∑
l=1

βlx
v
l (i, j)

]
+

n∑
l=1

r0lx
v
l (i, j)

w̃s(i, j) = ρhs (z1)
−1

{
w̃s+1(i, j) +

n∑
l=1

rslx
v
l (i, j)

+rs0

[
u(i, j)−

n∑
l=1

βlx
v
l (i, j)

]
−
[
αsỹ(i, j)+εs(i, j)

]}
(10)

for 1 ≤ s ≤ m where w̃m+1(i, j) = 0, εs(i, j) = 0 unless s =
k, ỹ(i, j) is the actual output, w̃s(i, j) is the actual signal of
ws(i, j) and εk(i, j) = Q[αkỹ(i, j)]−αkỹ(i, j) is the roundoff
noise due to quantizer Q[ · ]. Subtracting (8) from (10) yields

δy(i, j) = δw1(i, j)

δws(i, j) = ρhs (z1)
−1

[
δws+1(i, j)−αsδy(i, j)−εs(i, j)

]
(11a)

where

δy(i, j) = ỹ(i, j)− y(i, j)

δws(i, j) = w̃s(i, j)− ws(i, j)

= ∆s[x̃
h
s (i, j)− xhs (i, j)] = ∆s δx

h
s (i, j)

(11b)

If a 1-D state-space model (A1, ek, c1)m is realized using (5)
from (11a), the transfer function from −εk(i, j) to δy(i, j) is
given by

H1k(z1) = c1(z1Im −A1)
−1ek for k = 1, 2, · · · ,m (12)
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where ek is the kth column of an identity matrix Im and

c1 =
[
∆1 0 · · · 0

]

A1 =


−α1∆1 ∆2 · · · 0

−α2∆1 0
. . .

...
...

...
. . . ∆m

−αm∆1 0 · · · 0

+

γ1 0 · · · 0

0 γ2
. . .

...
...

. . . . . . 0
0 · · · 0 γm


Based on above analysis, it is natural to define the roundoff
noise gain in terms of H1k(z1) as

J1(αk) =
E[δy(i, j)2]

E[εk(i, j)2]
=

1

2πj

∮
|z1|=1

HH
1k(z1)H1k(z1)

dz1
z1
(13)

where HH
1k(z1) denotes the conjugate transpose of H1k(z1).

Substituting (12) into (13), it follows that for k = 1, 2, · · · ,m

J1(αk) = eTk

[ ∞∑
i=0

(c1A
i

1)
T c1A

i

1

]
ek = eTkW

hek (14)

where W h is the horizontal observability Grammian which
can be obtained by solving the Lyapunov equation [9],[13]

W h = AT
1 W

hA1 + cT1 c1

Similarly, the roundoff noise gain produced by the coefficient
rkl for l = 0, 1, · · · , n in the second equation of (8) can be
expressed as

J2(rkl) = eTkW
hek for k = 1, 2, · · · ,m (15)

With wk+1(i, j) replaced by ∆k+1x
h
k+1(i, j) in the second

equation of (8), the roundoff noise gain due to ∆k+1 can be
viewed as a function of rkl, i.e.,

J2(∆k+1) = J2(rkl) = eTkW
hek for k = 1, 2, · · · ,m− 1

(16)
As shown in Fig. 1(a), parameter γk induces a multiplication
γkx

h
k(i, j) which produces no roundoff noise if γk = 0, ±1.

Let ψ(γk)ϵ
h
k(i, j) denote the roundoff noise due to γk where

ψ(γk) = 1 for all γk except γk = 0, ±1 for which ψ(γk) =
0, and δy(i, j) be the corresponding output deviation. Then
the transfer function from ψ(γk)ϵ

h
k(i, j) to δy(i, j) becomes

H1k(z1) in (12). Actually, this roundoff noise can be viewed
as that generated by the term rklx

v
l (i, j). Hence

J3(γk) = ψ(γk)J2(rkl) = ψ(γk)e
T
kW

hek (17)

for k = 1, 2, · · · ,m where

ψ(γ) =

{
1 for γ ̸= 0 ,±1

0 for γ = 0 ,±1

Concerning the roundoff noise due to coefficient r0l for
l = 0, 1, · · · , n in the first equation of (8), the first equation
in (11a) needs to be changed to

δy(i, j) = δw1(i, j) + ε0l(i, j) (18)

When a 1-D state-space model (A1,α,−c1, 1)m is realized
from (11a) whose first equation was replaced by (18) and

εs(i, j) = 0 in the second equation, the transfer function
H10(z1) from ε0l(i, j) to δy(i, j) is given by

H10(z1) = −c1(z1Im −A1)
−1α+ 1 (19)

where α = [α1, α2, · · · , αm]T . Hence the roundoff noise gain
caused by the coefficient r0l is found to be

J4(r0l) = αTW hα+ 1 for l = 0, 1, · · · , n (20)

Supposing that w1(i, j) in the first equation of (8) is replaced
by ∆1x

h
1 (i, j), the roundoff noise gain produced by ∆1 is

identical to that by r0l, which leads to

J4(∆1) = J4(r0l) = αTW hα+ 1 (21)

We now examine the roundoff noise caused by the term
βpx

v
p(i, j) for 1 ≤ p ≤ n at the output. Due to the product

quantization, for the actual filter implemented by a FWL
system, (8) and (9) can be written as

ỹ(i, j) = w̃1(i, j) +
n∑

l=1

r0lx̃
v
l (i, j)

+ r00

[
u(i, j)−

n∑
l=1

βlx̃
v
l (i, j)− ε̂p(i, j)

]
w̃k(i, j) = ρhk(z1)

−1
{
w̃k+1(i, j) +

n∑
l=1

rklx̃
v
l (i, j)

+ rk0

[
u(i, j)−

n∑
l=1

βlx̃
v
l (i, j)− ε̂p(i, j)

]
−αkỹ(i, j)

}
(22)

for k = 1, 2, · · · ,m where w̃m+1(i, j) = 0, and

x̃v1(i, j + 1)= γ̂1x̃
v
1(i, j)

+ ∆̂1

[
u(i, j)−

n∑
l=1

βlx̃
v
l (i, j)− ε̂p(i, j)

]
x̃vl (i, j + 1)= ∆̂lx̃

v
l−1(i, j) + γ̂lx̃

v
l (i, j)

(23)
for l = 2, 3, · · · , n, respectively, where x̃vl (i, j) denotes the ac-
tual signal of xvl (i, j) and ε̂p(i, j) = Q[βpx̃

v
p(i, j)]−βpx̃vp(i, j)

is the roundoff noise due to quantizer Q[ · ]. Subtracting (8)
from (22) yields

δy(i, j) = δw1(i, j)+
n∑

l=1

r0lδx
v
l (i, j)

+r00

[
−ε̂p(i, j)−

n∑
l=1

βlδx
v
l (i, j)

]
δwk(i, j) = ρhk(z1)

−1
{
δwk+1(i, j)+

n∑
l=1

rklδx
v
l (i, j)

+rk0

[
−ε̂p(i, j)−

n∑
l=1

βlδx
v
l (i, j)

]
−αkδy(i, j)

}
(24)

for k = 1, 2, · · · ,m where δwm+1(i, j) = 0 and δxvl (i, j) =
x̃vl (i, j) − xvl (i, j) for l = 1, 2, · · · , n. Using (5) and (11b),
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we can write (24) as

δy(i, j) = ∆1δx
h
1 (i, j)+

n∑
l=1

(r0l − r00βl)δx
v
l (i, j)

+r00 · −ε̂p(i, j)

δxhk(i+ 1, j) = −αk∆1δx
h
1 (i, j)+∆k+1δx

h
k+1(i, j)

+
n∑

l=1

(
rkl − αkr0l − rk0βl + r00αkβl

)
δxvl (i, j)

+ γkδx
h
k(i, j) + (rk0 − r00αk) · −ε̂p(i, j)

(25)
for k = 1, 2, · · · ,m where xhm+1(i, j) = 0. By subtracting (9)
from (23), we obtain

δxv1(i, j + 1)= γ̂1δx
v
1(i, j)+∆̂1

[
−ε̂p(i, j)−

n∑
l=1

βlδx
v
l (i, j)

]
δxvl (i, j + 1)= ∆̂lδx

v
l−1(i, j)+γ̂lδx

v
l (i, j)

(26)
At this point, we consider a 2-D local state-space realization of
(25) and (26). The transfer function from −ε̂p(i, j) to δy(i, j)
is then found to be [13]

H(z1, z2) = d+ c1(z1Im −A1)
−1b1

+
[
c1(z1Im−A1)

−1A2+c2
]
(z2In−A4)

−1b2
(27)

where

A2 =


r11 r12 · · · r1n
r21 r22 · · · r2n

...
...

. . .
...

rm1 rm2 · · · rmn

−

α1

α2

...
αm

 [
r01 r02 · · · r0n

]

−


r10
r20

...
rm0

 [
β1 β2 · · · βn

]
+r00


α1

α2

...
αm

 [
β1 β2 · · · βn

]

A4 =


−β1∆̂1 −β2∆̂1 · · · −βn∆̂1

∆̂2 0 · · · 0
...

. . . . . .
...

0 · · · ∆̂n 0

+

γ̂1 0 · · · 0

0 γ̂2
. . .

...
...

...
. . . 0

0 0 · · · γ̂n


b1 =

[
r10 r20 · · · rm0

]T − r00
[
α1 α2 · · · αm

]T
b2 =

[
∆̂1 0 · · · 0

]T
d = r00

c2 =
[
r01 r02 · · · r0n

]
− r00

[
β1 β2 · · · βn

]
Based on this, the roundoff noise gain defined by J5(βp) =
E[δy(i, j)2]/E[ε̂p(i, j)

2] can be expressed as

J5(βp) =
1

(2πj)2

∮
|z1|=1

∮
|z2|=1

|H(z1, z2)|2
dz1dz2
z1z2

(28)

Substituting (27) into (28) yields

J5(βp) = bT1 W
hb1 + bT2 W

vb2 + d2

= bT1 W
hb1 + ∆̂2

1ê
T
1 W

vê1 + r200
(29)

where W v is the vertical observability Grammian which can
be obtained by solving the Lyapunov equation [9], [13]

W v = AT
4 W

vA4 +AT
2 W

hA2 + cT2 c2

Due to the product quantization caused by ∆̂1 in the first
equation of (9), the actual filter implemented by a FWL system
can be written as

ỹ(i, j) = w̃1(i, j) +
n∑

l=1

r0lx̃
v
l (i, j)

+ r00

[
u(i, j)−

n∑
l=1

βlx̃
v
l (i, j)

]
w̃k(i, j) = ρhk(z1)

−1
{
w̃k+1(i, j) +

n∑
l=1

rklx̃
v
l (i, j)

+ rk0

[
u(i, j)−

n∑
l=1

βlx̃
v
l (i, j)

]
−αkỹ(i, j)

}
(30)

for k = 1, 2, · · · ,m where w̃m+1(i, j) = 0, and

x̃v1(i, j + 1)= γ̂1x̃
v
1(i, j) + ∆̂1

[
u(i, j)−

n∑
l=1

βlx̃
v
l (i, j)

]
+ εv1(i, j)

x̃vl (i, j + 1)= ∆̂lx̃
v
l−1(i, j) + γ̂lx̃

v
l (i, j)

(31)
for l = 2, 3, · · · , n, respectively, where εv1(i, j) is the roundoff
noise caused by ∆̂1. Subtracting (8) from (30) yields

δy(i, j) = δw1(i, j)+
n∑

l=1

r0lδx
v
l (i, j)−r00

n∑
l=1

βlδx
v
l (i, j)

δwk(i, j) = ρhk(z1)
−1

{
δwk+1(i, j) +

n∑
l=1

rklδx
v
l (i, j)

− rk0

n∑
l=1

βlδx
v
l (i, j)−αkδy(i, j)

}
(32)

for k = 1, 2, · · · ,m where δwm+1(i, j) = 0. Subtracting (9)
from (31), we obtain

δxv1(i, j + 1)= γ̂1δx
v
1(i, j)−∆̂1

n∑
l=1

βlδx
v
l (i, j) + εv1(i, j)

δxvl (i, j + 1)= ∆̂lδx
v
l−1(i, j) + γ̂lδx

v
l (i, j)

(33)
for l = 2, 3, · · · , n, respectively. Using (5) and (11b), we
consider a 2-D local state-space realization of (32) and (33).
The transfer function from εv1(i, j) to δy(i, j) is then found to
be

H21(z1, z2) =
[
c1(z1Im−A1)

−1A2+c2
]
(z2In−A4)

−1ê1
(34)

where êl denotes the lth column of an identity matrix In.
Hence the roundoff noise gain due to ∆̂1 becomes

J6(∆̂1) = êT1 W
vê1 (35)

Similarly, the roundoff noise gain due to ∆̂l for l = 2, 3, · · · , n
is given by

J6(∆̂l) = êTl W
vêl for l = 2, 3, · · · , n (36)
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and the roundoff noise gain due to γ̂l for l = 1, 2, · · · , n can
be written as

J6(γ̂l) = ψ(γ̂l)ê
T
l W

vêl for l = 1, 2, · · · , n (37)

Based on the above analysis, the total roundoff noise gain
of the filter structure in Fig. 2 can be defined as

Jρ =
m∑

k=1

[
J1(αk)+

n∑
l=0

J2(rkl)+J3(γk)
]

+
m−1∑
k=1

J2(∆k+1) + J4(∆1) + J4(r00)

+
n∑

l=1

[
J4(r0l) + J5(βl) + J6(∆̂l) + J6(γ̂l)

] (38)

which can be written as

Jρ = (n+ 3) tr
[
W h

]
− eTmW hem + tr

[
ΨW h

]
+(n+ 2)

(
αTW hα+1

)
+tr

[
W v

]
+tr

[
Ψ̂W v

]
+n

(
bT1 W

hb1 + ∆̂2
1ê

T
1 W

vê1 + r200
) (39)

where

Ψ = diag{ψ(γ1), ψ(γ2), · · · , ψ(γm)}
Ψ̂ = diag{ψ(γ̂1), ψ(γ̂2), · · · , ψ(γ̂n)}

Remark 1: At this point, it is of interest to note that the
roundoff noise gain for state-space realization of the filter
structure in (7) can be evaluated as [13]

JSρ = (n+ 3)tr[W h]− eTmW hem

+

m∑
k=2

ψ(γk)e
T
kW

hek + nêT1 W
vê1

+tr[W v] +
n∑

l=2

ψ(γ̂l)ê
T
l W

vêl + n+ 2

(40)

From (39) and (40), it follows that

Jρ−JSρ=ψ(γ1)e
T
1 W

he1+ψ(γ̂1)ê
T
1 W

vê1+(n+2)αTW hα

+n
[
bT1 W

hb1+(∆̂2
1−1)êT1 W

vê1+r
2
00

]
(41)

It is noted that the difference Jρ−JSρ evaluated in (41) is due
to the different number of parameters (coefficients) between
the filter structure in (7) and its state-space realization.

IV. A NUMERICAL EXAMPLE

Consider a 2-D stable SD digital filter of order (m,n) =
(3, 3) in (1) with[

a1 a2 a3
]
=
[
−2.173645 1.836929 −0.599655

][
b1 b2 b3

]
=
[
−2.280029 1.887939 −0.564961

]
[
ckl

]
=


0.019421 −0.027724 0.011468 −0.000087
0.004839 0.017545 −0.050267 0.033061

−0.004328 −0.008847 0.096260 −0.083801
−0.000138 0.007979 −0.052927 0.062607


The numerical results obtained by applying the technique

in [13] were summarized in comparison with two cases of

γz = [0, 0, · · · , 0]T and γδ = [1, 1, · · · , 1]T in Table I
where
γ
(
Jopt
ρ

)
=
[
1.000 0.625 0.750 0.000 1.000 0.625

]
γ
(
Jopt
Sρ

)
=
[
0.250 0.625 0.750 −0.750 0.750 0.750

]
TABLE I

PERFORMANCE COMPARISON AMONG VARIOUS γ

γz γδ γ
(
Jopt
ρ

)
γ
(
Jopt
Sρ

)
Jρ 922.4951 85.6754 51.2935 55.9660

JSρ 958.0212 81.6083 54.2407 51.5502

V. CONCLUSION

An expression of the roundoff noise gain for the resulting
structure has been derived and investigated. Moreover, the
roundoff noise gain has been compared with that deduced
in a recent study of generalized direct-form II state-space
realization of 2-D SD digital filters. In a numerical example,
the roundoff noise gains have been minimized with respect to
the free parameters subject to l2-scaling constraints through
exhaustive search in a finite element space [13].
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