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Abstract—Based on the concept of polynomial operators,
generalized direct-form II structure of two-dimensional (2-D)
separable-denominator (SD) digital filters is explored. It is shown
that 2-D SD digital filters can be modeled by a generalized SIMO
direct-form II and a generalized MISO transposed direct-form
II that are connected in cascade. Then an expression for the
roundoff noise gain in the resulting structure is derived and
investigated. Moreover, the roundoff noise gain is compared with
that deduced in a recent study of generalized direct-form II
realization of 2-D SD digital filters.

I. INTRODUCTION

In the past decades, delta operator has widely been used in
the realization of digital filters to improve finite-word-length
(FWL) performance in systems with high sampling rate [1]-
[5]. Li and Gevers have studied the roundoff noise gain for the
delta-operator state-space realization of a transfer function and
under what conditions the roundoff noise gain for the optimal
delta-operator realization is smaller than that for the optimal
shift-operator realization [1]. In [2], the filter was expressed
by second-order sections connected in cascade, each section
was implemented with a direct form in delta operator, and
different direct forms in the delta operator were extensively
compared. In [3], the concept of separately scaling the As
and filter coefficients in the delta transposed direct-form II
section was proposed to globally further minimize output
roundoff noise gain, as compared to selecting a single optimal
A only. In [4], a method for obtaining an optimal arbitrary-
order delta-operator direct-form II transposed filter has been
presented in terms of the roundoff noise gain and coefficient
sensitivity. Based on the concept of polynomial operators, a
new structure which is considered a generalization of the shift
operator z-based direct-form II transposed structure has been
explored for digital filter implementation [5]. Alternatively,
due to their desirable properties and ease of stability test,
2-D SD digital filters have been widely studied as a very
popular class for multidimensional signal processing in the
past [6]-[12]. Recently, generalized direct-form II state-space
realization of 2-D SD digital filters has been constructed, and
an expression for the roundoff noise, an [»-scaling method to
avoid overflow, and a way to minimize the roundoff noise gain
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with respect to free parameters subject to lo-scaling constraints
have been examined [13].

In this paper, we present a detailed roundoff noise analysis
for generalized direct-form II structure of 2-D SD digital filters
using a different approach from [13]. The roundoff noise gain
is compared with that deduced in a recent study of generalized
direct-form II state-space realization of 2-D SD digital filters
in [13].

II. STRUCTURE OF 2-D DIGITAL FILTERS

Consider a 2-D stable SD digital filter of order (m,n)
described by

m n

2 :2 : -k =1
Cklzy1 29

mk:o 1=0 _ 1)
(1 + Zaszk) (1 + Zblzgl)
k=1 =1

where the denominator and numerator are assumed to be co-
prime. Let Py and Py be (m+1)x(m+1) and (n+1)x(n+1)
nonsingular matrices, respectively, defined by
T
[g6(z1) qi(z1) -+ dh(z)] =Pyfz* - 2 1
T
[65(22) @) (z2) -+ qi(z2)] =Py|zy

H(ZLZQ) =
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Next, scalars {ay |k =1,2,--- ,m}, {5l =1,2,--- ,n} and

'2,’2].

{rei|k=0,1,--- ,m; 1 =0,1,--- ,n} are defined so that
Ki[log ag «-+ ap)Pr=[1a; az -+ am)
ko[l BL Ba -+ Bu] Py =[1by by --- by]
Too -t Ton oo Con
Iillﬁgp{ P, =
'm0 T'mn Cmo Cmn
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From (1)-(3), the transfer function in (1) can be expressed as

Z Z rigi (21)47 (22)

H(z1,2) = 5= m S
Y i (z1) ) Big (22)
k=0 =0
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where scaling factors x; and ko are determined by requiring
ag =1 and By = 1. We now define

ph(z1) = ATk for f= 1,2,---,m
Ay
Z2 — )
p7(22) = — for [=1,2,---,n

l

where {7, }, {41}, {&) > 0} and {A; > 0} are four sets of
constants [13] and polynomial operators are chosen as

q(z1)
q/'(22)

(6)
and ¢" (21) = q’(22) = 1. Using (5), we can specify the
corresponding transformation matrices P, Py and scalars

R1 = Z1ZQ e 'Zm’ Ro = AlAQ s An Makmg use of (6),
the transfer function in (4) can be written as [13]

k=0,1,--- ,m—1
1=0,1,--

=P (21)Ppsa(z1) - Pl (21),

:p;}+1(2«'2)p;}+2(22) pZ(ZQ)a an_l

k=0 1= =0 =
H(a,m) = — =
( a [] ph(= )(ZﬁszQZQ )
k=0 p=0 q=
(7
where g = By = 1 and pfi(z1) 7 = p§(z2) "t = 1.

The implementations of pf(21)~! and pY(z2)~! are de-
picted in Fig. 1. As an illustrative example, the structure of
(7) for a 2-D filter with (m,n) = (3,3) is depicted in Fig. 2
where u(, j) is a scalar input and y(i, j) is a scalar output.

Fig. 1. (a) Implementation of p?(z1) ™" and (b) that of pY (22) 1.
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Fig. 2. The 2-D filter structure of (7) with (m,n) =

1) (2)"
Zﬂ 8,

(3,3).
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From Figures 1 and 2, we deduce

Zﬂlﬂfl 1] }

y(i. ) = wii,3) + roo (i j
+Zrolx?(ia]
=1 n
wi(i, f) = p};(zl)-l{wm(i,j) + " (i)
=1

Zﬂm 7| - i)}

,m where wy,4+1(%,7) = 0. In addition,
)= 3 i)

€))

®)

+7“k0[
for k=1,2,---

2, + 1) =5t (i) + Aa[uli,j

o} (i, + 1) = Buail_y (i, ) + A} (i, )
forl =2,3,---,n

We note that the model in (7) contains 2(m +n)+ (m +1)
-(n + 1) nontrivial parameters {ay}, {Ax}, {8}, {A;} and
{rr:} plus m + n free parameters {7, } and {%;}.

III. ROUNDOFF NOISE ANALYSIS

We begin by examining the roundoff noise caused by the
term axy(i,j) for 1 < k < m at the output. Due to the
product quantization, for the actual filter implemented by a
FWL system, (8) can be written as

(i, j)

Zﬂlxl Z V] }

= 1111(1'7J)+7“00{
Z?"Oll'l ) ]
4(i,5) = P! <z1>-1{ws+l i)+ > s i)

n =1
Zﬁlxl { ] :| sg<lv.7)+gs(lu7)]}
=1

(10)
for 1 < s < m where Wy,+1(¢,7) =0, E5(¢,j) = 0 unless s =
k, (4, 7) is the actual output, w(7, ) is the actual signal of
ws(i, ) and B, (4, j) = Qaxg(é, j)] — (i, j) is the roundoff
noise due to quantizer @[-]. Subtracting (8) from (10) yields

+rso|u |:

Sy (i,g) = dwi (i, ])

Sws(i,7) = pl(21) " [Jwsi1 (4, ) —asdy (i, 5) —Es (i, )]
(11a)
where
&U(Zv.]) = :IJ(Z»J) - y(z,])

AL[@h (i, 7) — 220, 5)] = As 62l (4, 7)
If a 1-D state-space model (A1, €k, c1)y, is realized using (5)
from (11a), the transfer function from —2 (4, j) to dy(4, j) is

given by

H1k(21) = Cl(Z1Im — Al)_lék for k=1,2,---,m (12)
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where €y, is the kth column of an identity matrix I,, and

=[A; 0 -+ 0]
*041Z1 ZQ 0 1 o --- 0
A = —052Z1 0 i 0 7 :
57 S A, : . .0
—amAy 0 - 0 0 --- 0 7,

Based on above analysis, it is natural to define the roundoff
noise gain in terms of Hyx(z1) as

Eloy(i,5)*] 1 , PN
Jilar) = E[&(i,7)? } 277] |z1]= 1H1k( V) Hi(z) 77 (213)

where H{I(z;) denotes the conjugate transpose of Hyx(21).
Substituting (12) into (13), it follows that for k =1,2,--- ;'m

Jl (O{k) = Eg [Z(clAi)TclAi] Ek = nghék (14)
i=0
where W" is the horizontal observability Grammian which
can be obtained by solving the Lyapunov equation [9],[13]

W' =ATW"A; + cf e

Similarly, the roundoff noise gain produced by the coefficient
ri for [ = 0,1,--- ,n in the second equation of (8) can be
expressed as

J2(Tkl) = nghék for k=1,2,--- (15)

,m

With wy1(i,j) replaced by Apyiaf, (i,5) in the second
equation of (8), the roundoff noise gain due to Ay, can be
viewed as a function of 7, i.e.,

Jo(Agy1) = -1
(16)
As shown in Fig. 1(a), parameter 7, induces a multiplication
¥,@ (i, j) which produces no roundoff noise if 7, = 0, +1.
Let ¥(7,, )€ (i, ) denote the roundoff noise due to 7, where
Y(7,) = 1 for all 7, except 7,, = 0, £1 for which ¥ (7,) =
0, and 0y(7,j) be the corresponding output deviation. Then
the transfer function from (%, )€l (i, j) to dy(i,j) becomes
Hiyj(z1) in (12). Actually, this roundoff noise can be viewed
as that generated by the term 742} (4, j). Hence

J3(Tr) = v (Tp) J2(ri) = (7, )Er Wey,

for k=1,2,---,m where

1 for
Y(y) = {

0 for
Concerning the roundoff noise due to coefficient rq; for
l=0,1,--- ,n in the first equation of (8), the first equation
in (11a) needs to be changed to

oy(i,j) = owi (i, ) + o (i, )

When a 1-D state-space model (A;, a, —cy, 1), is realized
from (11a) whose first equation was replaced by (18) and

J2 (k1) Zéfwhék for k=1,2,---,m

a7

v#0,+1
vy=0,%1

(18)
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Zs(i,7) = 0 in the second equation, the transfer function
Hyo(z1) from eq;(i, j) to dy(i,7) is given by
HlO(Zl) = —Cl(lem—Al)_1a+1 (19)
where o = [a1, a9, -+, ;T Hence the roundoff noise gain
caused by the coefficient rg; is found to be
Ji(ro) = o Wha+1 for 1=0,1,---,n (20)
Supposing that w1 (4, j) in the first equation of (8) is replaced
by Ajz(i,j), the roundoff noise gain produced by A; is
identical to that by rq;, which leads to
J4(Z1) = J4(T01) = aTWha +1 (21)
We now examine the roundoff noise caused by the term
ﬁpx;(i, j) for 1 < p < n at the output. Due to the product
quantization, for the actual filter implemented by a FWL
system, (8) and (9) can be written as

§(i,j) = b1, §) + me?(i,j)

)= A ) =4 i)l

n

wi(i,5) = p(z) ™! {wk+1 i,7) +Z7‘kl$l (4, 7)
=1

+7"00|:

ko [u(i, ] Zﬁle i,9) = £(0.3)| — i) }
(22)
for k=1,2,--- ,m where W;,+1(¢,7) =0, and
y(i, 5+ 1) =nz7(, j)
A [l ) = D0 A, 9) — (6 )]
=1
&6, + 1) = M@y (i, 5) + 37 (6, )

(23)
forl =2,3,---,n, respectively, where Z} (i, j) denotes the ac-
tual signal Of 'r,lu (7’5]) and ép(ll’v.]) = Q[ﬂij(Za])]—ﬂij(lvj)
is the roundoff noise due to quantizer Q)[-]. Subtracting (8)

from (22) yields

Sy(i, ) = dwr (i, 5)+>_ raday (i, 5)
=1
—&-roo[ €p(i,7) Zﬂléml i ]}
(24)
bwi(i, j) = (1) {6wk+1 43+ ruade i)
=1

+rio {*ép(iyj) *i 515557(1'0)} — a0y (i, J)}
=1

for k =1,2,--- ,m where dwy,4+1(4,7) = 0 and dz}(4,5) =
2V (i,7) —x}(i,4) for I = 1,2,--- ,n. Using (5) and (11b),
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we can write (24) as

Sy(i,j) = Ayéxh (i +Z ror — rooB1)0x] (i, 7)
=1
+roo - —Ep(4,7)
5IZ(Z + 17]) = 70‘kZ155E’11(i7j)+Zk+1§xz+1(iaj)

+ Z(Tkl — oror — reoBr + rooaBr) 0y (i, 5)
1=1
+ 7,02 (i, §) + (rro — Toook) - —€p(i, )
(25)
for k =1,2,---,m where zﬁﬂ_l(i,j) = 0. By subtracting (9)
from (23), we obtain

0040, + 1) =103 (i, )+ Ar [0, ) Zﬁzéxl i.)]
oxy(i,j + 1) = Ndxy_ (i, §)+50x} (4, 7)

(26)
At this point, we consider a 2-D local state-space realization of
(25) and (26). The transfer function from —¢&,(4, j) to dy(i, j)
is then found to be [13]

H(Zl,ZQ) =d+ Cl(lem — Al)_lbl
+ [er(z1 I — A1) TP Ag+ e (221, — Ag) iy

27
where
11 Ti2 Tin aq
T21 T22 T2n a2
Ay = . - [7"01 To2 - T()n]
T"ml Tm?2 © Tmn Qm
r10 al
720 Q3
- . [B1 B2 -+ Bn] +700 [B1 Bz - Bal
'm0 Am
—5}A1 —Baly —BaAy n 0 - 0
Ag 0 0 0 A :
Ay = . ) ) N e
: B r : Lo 0
0 A, 0 0 0 *
T T
b1=[7"10 T20 - Tmo] —7’00[041 Qg - Oém]
. T
by =[A; 0 0] d = roo

rOn}_TOO[ﬁl B2 - ﬂn]

Based on this, the roundoff noise gain defined by J5(3,) =
E[6y(i, )%/ EEp(i, j)?] can be expressed as

c2 = [ro1 o2 -

where W is the vertical observability Grammian which can
be obtained by solving the Lyapunov equation [9], [13]

= A{W'A; + AJW" Ay + cf e,

Due to the product quantization caused by Ay in the first
equation of (9), the actual filter implemented by a FWL system
can be written as

n
- 12)1(%7]) + ZTOli;}(iv‘j)
=1
+ 700 [U(Z 7)

y(1,5)

=3 A, )]
=1

(i) = pl(z1)" l{wkﬂ L)+ Y ()
=1

(30)

+7“ko[ Zﬁle 0] } Oékﬂ(l}j)}
for k=1,2,--- ,m where W;,+1(4,5) =0, and
B+ 1) =31500,9) + As [uli, 1) — Y it ()]
+e1(i, 5) =
i"lu(ia] + 1) = Al‘%?—l(ivj) + ’%ZZ';}(Z,])
(3D
for ! = 2,3, ,n, respectively, where 7 (i, j) is the roundoff

noise caused by A;. Subtracting (8) from (30) yields

Sy, 5) = dwi(i,5)+ Y roidy (i,5)—roo »_ Biday (i, 5)

=1 n o I=1
Swy (i, 5) = pi(=1)” {5wk+1 i) +Z7“kl5$z (4, )

—moZBz&vl ) akéy(Z,J)}

(32)
for k = 1,2,--- ,m where dw,,+1(¢,7) = 0. Subtracting (9)
from (31), we obtain
02y (i, j + 1) =41023 (i,5)— A1 > Biday (i, 5) + €9(i, )
1=1
Sap (i, + 1) = Ay (i, ) + nday (i, )
(33)
for | = 2,3,---,n, respectively. Using (5) and (11b), we
consider a 2-D local state-space realization of (32) and (33).

The transfer function from &3 (4, j) to dy(4, ) is then found to
be

Hyi (21, 22) = [e1(z1lim— A1) "t Asteo] (221, — Ay) e

(34)
where é; denotes the /th column of an identity matrix I,,.

dz1dz Hence the roundoff noise gain due to A; becomes
(p_27r f f Hen 2P Z28 08) ‘ pe s EHe e S

3 Jizr=1 a2 172 Jo(Ay) = el wre, (35)

Substituting (27) into (28) yields Similarly, the roundoff noise gain due to A, forl = 2,3, ,n
J5(By) = b] Wby + by Wb, + d? 09) is given by
N A ~T VA

= b Whb, + A2eTWe, + 12, Js(A) =€, W' for 1 =2,3,---,n (36)
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and the roundoff noise gain due to 4; for [ =1,2,--- |n can
be written as
Jo(31) = v(n)ef W, for 1=1,2,---,n  (37)

Based on the above analysis, the total roundoff noise gain
of the filter structure in Fig. 2 can be defined as

m

Ty = 3 [D(@) 4 3 Balria)+ 757

k=1 =0

m—1

+ Z JQ(Zk—J,_l) + J4(Z1) + Ju(r00)

n k=1

3 [alron) + J5(80) + Jo(A) + Jo )|

=1

(38)

which can be written as
J, = (n+3)u[W"] —eL W'e,, + «[ TW"]
+(n+2) (@™ Wha+1)+u[W*] +u[TW?]
+n(bf Woy + A2ef We + 1))

(39)

where

= diag{¥(71), ¥ (¥2),- - ;¥ (n)}

Remark 1: At this point, it is of interest to note that the
roundoff noise gain for state-space realization of the filter
structure in (7) can be evaluated as [13]

Js, = (n+3)u[W"] —el whe,,
+> (T, )L Wey + néf Whe,
k=2 n

WO+ p(5)ef Whe +n+ 2
=2

From (39) and (40), it follows that
Jo—Jsp, =107, )Et We+y(51)e] Woert (n+2)a’ Wha

kg
N4

(40)

+n [blTthl+(A§—1)é1TW”é1+r§O}
(41)
It is noted that the difference J, — Jgs, evaluated in (41) is due
to the different number of parameters (coefficients) between
the filter structure in (7) and its state-space realization.

IV. A NUMERICAL EXAMPLE
Consider a 2-D stable SD digital filter of order (m,n) =
(3,3) in (1) with
[a1 as az | =[-2.173645 1.836920 —0.599655 |
[ b1 by by | =[—2.280029 1.887939 —0.564961]

v, =10,0, -, 0T and v5 = [1, 1, ---, 1]T in Table I
where

~(JgP') = [ 1.000 0.625 0.750 0.000 1.000 0.625]
y(JE) =10.250 0.625 0.750 —0.750 0.750 0.750]

TABLE I
PERFORMANCE COMPARISON AMONG VARIOUS ~y

v. | v [ [ A

Jp 922.4951 | 85.6754 | 51.2935 55.9660
Jsp | 958.0212 | 81.6083 | 54.2407 51.5502

V. CONCLUSION

An expression of the roundoff noise gain for the resulting
structure has been derived and investigated. Moreover, the
roundoff noise gain has been compared with that deduced
in a recent study of generalized direct-form II state-space
realization of 2-D SD digital filters. In a numerical example,
the roundoff noise gains have been minimized with respect to
the free parameters subject to ls-scaling constraints through
exhaustive search in a finite element space [13].
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