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Abstract— Light fields have emerged as one of the most 

promising 3D representation formats, enabling a richer and more 

immersive representation of a visual scene. The lenslet light field 

acquisition approach consists in placing an array of micro-lenses 

between the camera main lens and the photosensor to allow 

capturing both the intensity and the direction of the light rays. 

This type of representation format offers new interaction 

possibilities with the visual content, notably a posteriori refocusing 

and visualization of different perspectives of the visual scene. 

However, this representation model is associated to very large 

amounts of data, thus requiring efficient coding solutions in order 

applications involving storage and transmission may be deployed. 

This paper proposes a novel lenslet light field imaging scalable 

coding solution adopting a wavelet-based approach, able to offer 

view, quality and spatial scalabilities, to meet the characteristics of 

multiple types of displays, transmission channels and user needs. 

The performance results show that the proposed coding solution 

performs better than alternative scalable coding solutions, notably 

JPEG 2000.  

Keywords— lenslet light field; sub-aperture image; disparity 
estimation and compensation; scalability; JPEG 2000. 

I. INTRODUCTION 

Replicating the visual world in the most faithful and 
immersive way has always been the target of visual 
representation technology, notably cameras/sensors, codecs and 
displays. For decades, a digital picture has always been a 2D 
array of pixels where each pixel accumulates the light incident 
from all directions on a specific sensor position. However, this 
is a limited representation model as highlighted by the so-called 
plenoptic function [1][2], which models the light in the 3D space 
with a 7D function of five spatial coordinates, notably three 
position coordinates and two directional coordinates, thus 
expressing the fact that light rays have a direction.  

In recent years, major developments in visual acquisition 
technology allowed to develop the so-called lenslet light field 
cameras, such as Lytro and Raytrix, which are able to measure 
the intensity of light incident on a specific position coming from 
multiple spatial directions using an array of micro-lenses 
between the camera main lens and the photosensor, creating the 
so-called micro-images. This richer representation model allows 
the visual data to be a posteriori manipulated by the users, 
notably controlling the focus, the scene perspective or even 
creating stereoscopic images [2]. However, this richer 
representation is associated to a larger amount of data, which 
critically needs efficient coding in order practical applications 
may be deployed. Recognizing this need, both JPEG and MPEG 
are studying this problem, with JPEG taking the lead by 
launching in January 2017 a Call for Proposals on Light Field 
Coding [3], which considered both lenslet and high dense 
camera arrays (HDCA) light fields.  

Because a lenslet light field includes a lot of data that may 

be progressively consumed in several dimensions, e.g. more 
views, more resolution, more quality, scalable coding is a rather 
natural requirement, which has not been much addressed in the 
literature. In this context, this paper proposes a novel lenslet light 
field imaging scalable coding solution adopting a wavelet-based 
approach, able to offer view, quality and spatial scalabilities, to 
meet the characteristics of multiple types of displays, 
transmission channels and user needs. This novel coding 
solution offers significant gains regarding the most relevant 
scalable solution available. The remainder of this paper is 
organized as follows: Section II presents a brief review of the 
background work, while Section III presents the architecture and 
walkthrough of the proposed coding solution. Section IV offers 
a detailed description of the most relevant tool in the codec, 
notably the disparity compensated inter-view discrete wavelet 
transform. Finally, Section V presents the performance results 
and their analysis, while Section VI concludes with final 
remarks and suggestions for future work. 

II. BACKGROUND WORK 

While the lenslet light field coding domain is rather recent, 
there are already several solutions proposed in the literature. A 
major distinction between the available solutions regards the 
adopted data structure, notably if the lenslet image (this means 
the set of micro-images) is directly coded or if it is organized in 
the set of so-called sub-aperture (SA) images/views, each 
corresponding to a specific viewpoint. Here, the available lenslet 
coding solutions will be grouped into four categories, depending 
on their relation with available coding standards:  

1. Standard compliant coding solutions: These solutions 
directly code the lenslet image with a standard coding solution. 
While these solutions cannot exploit all available redundancy in 
the lenslet light field, they benefit from the standard ecosystem 
as standard bitstreams and decoders are used. These solutions 
include both still image coding standards, namely JPEG and 
JPEG 2000, and video coding standards used in the Intra coding 
mode, namely H.264/AVC Intra and HEVC Intra [4]. 

2. Standard compliant coding solutions applied after some 
data re-organization: These solutions involve applying 
standard coding solutions after some data re-organization with 
the target to better exploit the redundancy in the data. The most 
common data re-organization involves taking the set of SA 
images as a sequence of video frames, creating a so-called 
pseudo-video [5][6]; other solutions code the set of SA images 
using some appropriate 2D spatial prediction structure [7]. 

3. Extended standard coding solutions: These solutions 
involve extending available coding standards with additional 
tools and coding modes to improve the compression 
performance for lenslet light field images; for example, [8][9] 
extend the HEVC standard with additional prediction tools to 
exploit the redundancy of the micro-images within the lenslet 
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image. Other solutions may code some SA images in a standard 
way, e.g. using JPEG 2000 or HEVC Intra, and the remaining 
SA images using depth/disparity based estimation. 

4. Non-standard based coding solutions: These solutions 
adopt rather different approaches. While some solutions are 
based on the exploitation of depth information [10], others have 
as cornerstone different transforms, notably the discrete wavelet 
transform (DWT) [11][12][13], and the Karhunen-Loeve 
transform (KLT) [14]. These coding solutions may use these 
transforms alone or even combined [15][16]. 

Although there are many coding solutions, most of them do 
not address scalability requirements as in this paper, this means 
offering view, quality and spatial scalabilities. 

III. DISPARITY COMPENSATED LENSLET LIGHT FIELD 

SCALABLE CODING: ARCHITECTURE AND WALKTHROUGH  

The architecture of the proposed Disparity Compensated 
Lenslet Light Field Scalable (DCLLFS) coding solution is 
shown in Fig. 1. As this architecture targets offering view, 
quality and spatial scalabilities to meet the characteristics of 
multiple types of displays, transmission channels and user needs, 
it is based on the DWT applied at both view intra-coding and 
inter-coding levels. Due to its scalability features, some of the 
modules are based on the JPEG 2000 standard. The Disparity 
Compensated Inter-View DWT module incorporates the main 
novelty of this coding solution, and aims exploiting the 
redundancy between the SA images while offering view 
scalability.  

 
Fig. 1.  Architecture of the proposed DCLLFS codec. 

A brief description of each module in the DCLLFS coding 
solution is presented next: 

1. Light Field Toolbox Pre-Processing: The objective of 
this module is to convert the raw light field image, obtained 
directly from the sensor, into a more suitable representation 
format. First, the lenslet image is created from the raw sensor 
data by applying demosaicing, devignetting, clipping, and some 
color processing. Then, the lenslet image, formed by thousands 
of micro-images, is converted into an array of SA images, each 
representing a different perspective view. This module uses the 
available Light Field Toolbox v0.4 software [17]. While the 
original light field image is composed by 225 SA images, it was 
decided to discard both the first and last row and column of the 
SA images array, resulting into 169 SA images, to avoid using 
SA images without enough quality, notably some black images 
in the corners due to the vignetting effect. This strategy has been 
also adopted by the JPEG PLENO Call for Proposals [3]. 

2. RGB to YCrCb Conversion: The objective of this module 
is to improve the compression efficiency by converting the RGB 
data into YCrCb data.  

3. Disparity Compensated Inter-View DWT: An inter-
view wavelet transform is chosen to decorrelate the various SA 
images and compact their energy into a small number of 
coefficients. This transform was designed with a lifting structure 
to allow including disparity estimation and compensation 
techniques in the prediction and updating steps [18]. The overall 
objective of the designed transform is to obtain low-frequency 
and high-frequency bands in such a way that the low-frequency 
band corresponds to a smoothed representation of a view and the 
high-frequency band to the high frequency information 
necessary to obtain the other view. The wavelet transform with 
disparity compensated lifting is applied to an array of SA images 
with size N and its frequency decomposition capabilities lead to 
N/2 low-frequency bands and N/2 high-frequency bands. To 
further exploit the correlation between the low-frequency bands, 
the wavelet transform can be used again in a second 
decomposition level, using now as input the low-frequency 
bands. By applying one level of transform decomposition, two 
scalability layers are created, the first associated to the low-
frequency bands and the second associated to the high-frequency 
bands; for each decomposition level added, one more scalability 
layer becomes available. A simplified architecture of the 
forward transform is shown in Fig. 2. As the disparity 
compensated inter-view DWT is the most original tool in the 
proposed coding solution, it will be detailed in Section IV. 

 
Fig. 2.  Architecture of the Haar disparity compensated wavelet transform for 

one decomposition level.  

4. Intra-View 2D-DWT: The objective of this module is to 
exploit the spatial redundancy within each SA image or high-
frequency/low-frequency band. The 2D-DWT transform with 
six decomposition levels, as available in the OPENJPEG 
software [19], has been adopted for application to all the 
frequency bands resulting from the inter-view transform. This 
process consists basically in applying a 1D-DWT along the X 
axis (spatially horizontally) and, after, again along the Y-axis 
(spatially vertically) to each image/band. The result of a 1-level 
2D wavelet decomposition is four filtered and subsampled 
images, also known as bands. The 2D-DWT enables resolution 
scalability as the SA images can be decoded at full resolution or 
only at a fraction of the full resolution [19].  

5. Quantization: The objective of this module is to reduce 
the accuracy of the 2D-DWT coefficients to obtain higher 
compression. The quantization is performed using a uniform 
scalar quantizer with dead-zone, which is one of the available 
JPEG 2000 quantization methods [20]. This quantization 
method allows also to progressively transmit the coefficients 
(quality or SNR scalability) by progressively sending the most 
significant bitplanes (MSB) and then advancing to the least 
significant bitplanes (LSB). All the bands obtained after 
applying the Intra-view 2D-DWT are quantized using this 
method [20]. 

6. EBCOT Coding: The objective of this module is to exploit 
the statistical redundancy of the 2D-DWT coefficients by 
performing entropy coding. First, each band is divided into small 
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rectangular blocks, referred to as codeblocks, and each 
codeblock is independently encoded with Embedded Block 
Coding with Optimized Truncation (EBCOT). All codeblocks 
from low to high frequency are scanned together from top to 
bottom and left to right with each band independently coded 
from the other bands. EBCOT performs multiple-pass coding of 
the codeblock bitplanes obtained in the previous step. Three 
passes are used, notably significance propagation, magnitude 
refinement and cleanup; more details about each pass are 
available in [20]. For JPEG 2000 to be compression efficient, a 
context-based adaptive binary arithmetic coding method is used, 
which exploits the correlation among bitplanes. 

IV. DISPARITY COMPENSATED INTER-VIEW DISCRETE 

WAVELET TRANSFORM 

As the Haar disparity compensated DWT (illustrated in Fig. 
2 for one decomposition level), which performs disparity 
compensation using a perspective geometric transform, is the 
key novelty of this paper, it is displayed with more detail in Fig. 
3. 

 
Fig. 3.  Disparity compensated inter-view DWT applied to two SA images or 

low-frequency/high-frequency bands, highlighting the relationship with the 

modules in Fig. 2. 

The Disparity Compensated Inter-View DWT module 
performs the following steps (see Fig. 3): 

1. Split: The input set of SA images (or bands) is divided into 
two different, complementary sets, where the even SA images 
and the odd SA images (or bands) are grouped in different sets. 

2. Feature Detection and Descriptor Extraction: The 
objective of this module is to detect distinctive features in the 
images associated to keypoints or blobs, and extract descriptors 
for those positions; the descriptors represent the features in some 
space that is invariant to common deformations such as 
translation, scaling, rotation, perspective changes, and partially 
invariant to illumination changes. In this case, the popular SIFT 
(Scale Invariant Feature Transform) descriptor [21] has been 
adopted.  

3. Descriptors Matching: The objective of this module is to 
match a set of (SIFT) descriptors extracted from one SA image 
with the descriptors extracted from another SA image, obtaining 
a set of one-to-one correspondences. In this case, a simple 
approach has been followed, which consists in taking each 
descriptor in the first set and matching it with all the descriptors 
in the second set, using some distance metric, e.g. the Euclidean 
distance. Then, a ratio test is applied. This test compares the ratio 
of distances between the two top matches for a given keypoint. 
If this ratio is above the threshold of 0.7, the match is rejected. 
The objective of this test is to increase the reliability of the 
matching procedure, thus avoiding some incorrect matches 
between keypoints [21]. 

4. Homography Estimation: The objective of this module is 
to estimate the geometric transformation between one SA image 
(or a low-frequency band) and the other by establishing a 
relationship between corresponding positions in the two SA 
images (or low-frequency bands); these correspondences were 
obtained in the previous step. Several formulations for this 
transformation are possible, such as affine, perspective, bilinear, 
and polynomial transforms. Considering the lenslet light field 
imaging characteristics, the most adequate transform for 
modelling the data seems to be the perspective transform, also 
known as homography, since it is able to model complex 
geometric relationships between different perspectives of the 
objects in the visual scene. The perspective transform (or 
homography) is defined by a 9-parameter matrix which is able 
to describe the object displacements in the visual scene when the 
perspective changes. When applied to SA images, this transform 
should describe well the disparity between the SA images, which 
is mainly determined by the characteristics of the micro-lenses 
array. To estimate the homography parameters, RANSAC, an 
iterative method to estimate the parameters of a mathematical 
model that is robust even when there are some wrong matches 
(outliers), has been adopted. To avoid that outliers reduce the 
accuracy of the estimated transformation matrix, RANSAC 
attempts to identify inliers, i.e. the data fitting well a set of model 
parameters (typically estimated with a standard regression 
method) and, therefore, not considering outliers in the 
estimation. 

5. Homography Parameters Compression: The 
perspective transform parameters are initially represented with 8 
bytes (64 bits), assuming double precision floating-point format. 
Since this precision may require a significant rate, as these 
parameters have to be transmitted to the decoder, it is important 
to adopt a quantization technique to compress this type of data. 
Note that, each time the inter-view wavelet transform is applied, 
a different homography matrix is used and, therefore, since there 
are many pairs of SA images (bands) for which a transform is 
applied, the number of parameters to be coded may be rather 
high. The compression solution must be applied to each 
homography matrix obtained for a given decomposition level.  

6. Warping or Disparity Compensation (𝒘𝟎𝟏): The 
objective of this module is to warp an input even SA image in 
such a way that it becomes similar to the odd SA image, which 
in this case corresponds to a slightly different perspective, in 
practice performing disparity compensation. This warping 
process is performed by using the decoded homography matrix. 
The SA image prediction is computed by multiplying each 
sample position in the input image (in homogeneous 
coordinates) by the homography matrix. By computing the 
difference between an odd view and the warped even view, the 
high-frequency band is obtained. 

7. Inverse Warping (𝒘𝟏𝟎): The objective of this module is to 
inversely warp the high-frequency band resulting from the 
previous step such that it becomes similar to the even SA image, 
thus allowing to obtain a smoothed representation of the even 
SA image. To perform this process, the inverse transformation 
(homography) is needed. As the scene disparity involved in this 
kind of data mostly corresponds to translations, because it is 
mostly due to the spatial separation between the micro-lenses 
and only a little due to optical defects in the micro-lenses, the 
homography matrix from a reference view into another view can 
be inverted, and thus an inverse homography matrix can be 
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obtained. This is also a requirement from the disparity 
compensated wavelet transform, which can only be applied 
when the warpings 𝑤01 and 𝑤10 are symmetric as otherwise the 
process may end up adding a residual to the odd view that is not 
aligned (prediction step), thus creating ghost artifacts. By 
computing a weighted sum between the even view and the 
warped high-frequency band, a low-frequency band SA image 
is obtained.  

The lifting scheme for the inverse disparity compensated 
wavelet transform to be performed at the decoder follows the 
scheme presented in Fig. 4. As the homography parameters are 
transmitted to the decoder, the inverse transform only needs to 
perform the predict and update steps in the reverse order flipping 
the signal in arithmetic operations, thus resulting in the original 
signal. 

 
Fig. 4.  Inverse disparity compensated inter-view DWT architecture. 

V. PERFORMANCE ASSESSMENT 

The objective of this section is to assess the rate-distortion 
(RD) performance of the proposed DCLLFS coding solution.  

A. Test Material, Benchmarks and Metrics 

To evaluate the RD performance, five lenslet light field 
images have been selected from the MMSPG EPFL Light Field 
Dataset [22]; this dataset has also been selected as the test set for 
the Light Field Compression Grand Challenge organized at 
ICME 2016 [23] and for the JPEG Pleno Call for Proposals on 
Light Field Coding [3]. The set of selected images is: Bikes, 
Danger_de_Mort, Stone_Pillars_Outside, Friends_1, and 
Fountain_&_Vincent_2. The images were chosen by their 
content, aiming to have a diversified dataset, with both high and 
low frequency content and objects at different depths. To 
simplify the text, in the following, the names will just be Bikes, 
Danger, Stone, Friends, and Fountain. Each light field is 
structured as a matrix of 225 SA images; however, for 
compression purposes, only 169 SA images, each with a spatial 
resolution of 625×434 pixels, will be considered. Because a 
scalable codec is proposed, the main benchmark will be the 
JPEG 2000 standard. However, due to its huge popularity, also 
the JPEG standard will be used as benchmark. When coding with 
JPEG 2000, the SA images are coded as a single “super image”, 
which is coded all at once. The RD points are defined by the rate 
spent in the “super image” and the PSNR is computed as the 
average PSNR of all SA images extracted from the decoded 
“super image”. Because this is usually enough, the performance 
assessment will be made only for the luminance (Y) component 
of the SA images. For the proposed DCLLFS coding solution, 
the rate is measured in bit-per-pixel (bpp) and includes both the 
rate for each compressed band and the homography parameters. 
To obtain the bpp rate, the total number of bits is divided by the 
number of coded SA images (169) multiplied by their resolution 
(625×434). 

B. Performance Results and Analysis 

The proposed solution and the benchmarks will be compared 
using the well-known Bjøntegaard Delta metrics [24]. The 

DCLLFS solution will be labeled as DCLLFS_HX_VY where X 
and Y are the number of wavelet decompositions applied in the 
horizontal and vertical directions, respectively, see Fig. 5. 

 
Fig. 5.  Applying one (central row) and two (bottom row) decomposition levels 
along the horizontal direction.  

The first set of results concerns the application of the 
proposed coding solution to horizontally neighboring SA 
images. Table 1 provides the BD-Rate and BD-PSNR for 
horizontal wavelet decompositions with two (DCLLFS_H2) and 
three levels (DCLLFS_H3) in comparison with JPEG 2000. The 
DCLLFS coding solution always performs much better than 
JPEG 2000 as this codec does not exploit the redundancy 
between the views. In terms of the BD-PSNR performance, it is 
possible to conclude that Friends is the light field exhibiting the 
highest gains, while Danger is the one with the lowest PSNR 
gains. This is understandable as Friends exhibits a more 
homogenous background while Danger includes letters and 
many more details, thus reducing the DCLLFS RD performance 
as there is less redundancy across the views. Regarding the 
number of decomposition levels impact, it is possible to 
conclude that increasing the number of decomposition levels of 
the proposed inter-view transform allows increasing the RD 
performance although with a reducing gain for any additional 
level. This implies that, at some stage, it is not worthwhile to 
keep increasing the number of decomposition levels. The 
proposed DCLLFS solution was also applied over the vertical 
direction, yielding similar, although slightly reduced, RD 
performance gains; due to length constraints, the results are not 
included here. Because DCLLFS_H3 does not bring major RD 
performance improvements regarding DCLLFS_H2 and the 
complexity increases, DCLLFS_H2 is taken here as the best 1-
direction decompositions solution. 

TABLE 1 - BJØNTEGAARD DELTA RESULTS REGARDING JPEG 2000 FOR: 
LEFT) DCLLFS_H2; RIGHT) DCLLFS_H3. 

 

After, the proposed DCLLFS solution was applied with 
decompositions in both directions. The wavelet decomposition 
is first applied to horizontally neighboring SA images and after 
to vertically neighboring SA images, as this was the order 
achieving better RD performance. When two decomposition 
levels are applied, DCLLFS_H1_V1 performs better than 
DCLFC_H2, with an average BD-Rate saving of 5.81%. Table 
2 presents results for the case where three decomposition levels 
are applied using as reference DCLLFS_H1_V1. While both 
solutions exploit the correlation between neighboring SA 
images, horizontally and vertically, the gains are rather similar 
for all light fields and both configurations result in rather similar 
RD performance improvements. 
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TABLE 2 - BJØNTEGAARD DELTA RESULTS USING AS REFERENCE 

DCLLFS_H1_V1 FOR: LEFT) DCLLFS_H2_V1; RIGHT) DCLLFS_H1_V2. 

 

Next, Table 3 shows performance results for four 
decomposition levels. Both the first and second solutions were 
implemented in the usual way, this means first processing the 
horizontal decompositions and after the vertical decompositions. 
However, for DCLLFS_H2_V2, the horizontal and vertical 
decompositions were applied alternately. While 
DCLLFS_H3_V1 shows a reduced RD performance, 
DCLLFS_H1_V3 shows almost no performance differences and 
DCLLFS_H2_V2 is the only configuration able to increase the 
DCLLFS_H2_V1 RD performance, showing that a balanced 
approach between the horizontal and vertical decompositions is 
the best solution. At this stage, DCLLFS_H2_V2 is taken as the 
best decomposition configuration as the additional RD 
performance gains of additional decompositions should not 
compensate the additional complexity.  

TABLE 3 - BJØNTEGAARD DELTA RESULTS REGARDING DCLLFS_H2_V1 

FOR: TOP-LEFT) DCLLFS_H3_V1; TOP-RIGHT) DCLLFS_H1_V3 ; BOTTOM) 

DCLLFS_H2_V2. 

 

Finally, Table 4 shows Bjøntegaard delta results for the 
DCLLFS_H2_V2 solution in comparison with JPEG 2000 and 
JPEG. The proposed DCLFC_H2_V2 solution is able to 
outperform both the JPEG and JPEG 2000 standards, which is 
expectable as none of these coding solutions provides 
decorrelation capabilities between neighboring SA images. The 
overall BD-Rate savings go up to 62.85% and 78.80% for JPEG 
2000 and JPEG, respectively. 

TABLE 4 - BJØNTEGAARD DELTA RESULTS USING DCLLFS_H2_V2 AS 

REFERENCE FOR: LEFT) JPEG 2000; RIGHT) JPEG. 

 

VI. FINAL REMARKS 

The proposed DCLLFS coding solution offers view, quality 
and spatial scalabilities to meet the characteristics of multiple 
types of displays, transmission channels and user needs, which 

does not happen for most lenslet light field coding solutions in 
the literature. Future work should consider using different 
wavelet transforms and different geometric transformations for 
different regions of the SA images to obtain better disparity 
compensations. 
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