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Abstract—Autoencoder, at the heart of a deep learning struc-
ture, plays an important role in extracting abstract representation
of a set of input training patterns. Abstract representation
contains informative features to demonstrate a large set of data
patterns in an optimal way in certain applications. It is shown
that through sparse regularization of outputs of the hidden units
(codes) in an autoencoder, the quality of codes can be enhanced
that leads to a higher learning performance in applications like
classification. Almost all methods trying to achieve code sparsity
in an autoencoder use a smooth approximation of /; norm, as
the best convex approximation of pseudo ¢y norm. In this paper,
we incorporate sparsity to autoencoder training optimization
process using non-smooth convex ¢; norm and propose an
efficient algorithm to train the structure. The non-smooth /¢;
regularization have shown its efficiency in imposing sparsity in
various applications including feature selection via lasso and
sparse representation using basis pursuit. Qur experimental
results on three benchmark datasets show superiority of this term
in training a sparse autoencoder over previously proposed ones.
As a byproduct of the proposed method, it can also be used to
apply different types of non-smooth regularizers to autoencoder
training problem.

I. INTRODUCTION

Being abstract is favorable for a representation [1]. The
performance of a machine learning system depends heavily on
the abstraction level of input pattern representation [2]. Visual
perception system also utilizes abstract representations [3].
Many researchers put their attention on designing automatic
systems for (abstract) representation learning. Toward this
objective, the first step is to define an equivalent (necessarily
measurable) for abstract (good) representation. In [2] several
worthwhile equivalents have been reviewed, where a simple
equivalent is: “A good representation is one that is useful
as input to a supervised predictor.”’. This measure is widely
used in various works to show the efficiency of their proposed
representation learning systems.

Depth of the model selected to learn representation is an im-
portant factor. Based on complexity theory, deep architectures
can be much more efficient than shallow architectures, in term
of computational elements required to represent a function
[4]. Consequently deep architectures are more favorable for
representation learning but until recently, they suffer from
getting stock in poor solutions when they are trained using
gradient based methods with random internalization. Deep
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learning brings an interesting solution to this problem. The
first idea was to add a pretraining step prior to training
a structure using probabilistic models, known as restricted
Boltzmann machine (RBF) [5]. Subsequent improvement was
achieved when deterministic models named autoencoders were
introduced for pretraining [6], [7].

Autoencoders consist of two parameterized deterministic
functions namely encoding and decoding. Encoding function
(or equivalently encoder) denoted by f.(-;61) is a straight-
forward efficient mapping from input space representation
to abstract representation (or code) where ; represents the
encoder parameters. The code corresponding to a sample input
pattern x is easily computed as: z = f.(x;61). A closely
related function to the encoder is a decoder which constitutes
a mapping from code space to input space to reconstruct input
pattern and is denoted by f4(+;02). The reconstructed pattern
is computed as: X = f4(z; 02). Training an autoencoder is the
process of determining parameters 67 and 65 so as to minimize
a distance measure between input pattern and its reconstructed
version at the output of the decoder over a training set. The
distance measure is usually squared reconstruction error or
binary cross-entropy in the case of inputs with binary nature.

One widely used structure for encoder and decoder is affine
mapping followed by optional non-linearity such as sigmoid or
hyperbolic tangent. With this structure, autoencoder resembles
a two layer neural network and training methods of neural
networks could be utilized to train an autoencoder.

One major threat in training an autoencoder is getting
stock in identity solution, a global minimizer which does
not reveal the underlying structure of input training pat-
terns. In order to solve this problem, constraint(s) should
be added to autoencoder learning procedure. Two types of
widely used constraints for the problem are: 1)Structural
constraints: These constraints are imposed on the structure of
autoencoder. An example of this type of constraints is com-
pressive autoencoder where code dimension is smaller than
input dimension. This autoencoder tries to find a compressed
representation of input pattern in code space. 2)Mathematical
constraints: Constraints of this type are imposed on the
learning optimization process using regularizers. Sparsity as
a mathematical constraint (regularizer) has been applied to
autoencoders through various formulations that have come to
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favorable results. In one of the earliest papers which utilizes
autoencoders to build a deep architecture [4], the weights
of encoding and decoding are tied to restriction of capacity.
Ranzato et al. have shown that tying weights will introduce
a form of sparsity to the problem [8]. Two other effective
methods of direct imposition of sparsity on autoencoder have
also been proposed. The first method penalizes hidden unit
biases [8] while, in the second method, codes are directly
penalized to be sparse [9], [10], [11]

Penalizing biases come with the deficiency that the weights
could compensate penalized biases effect. Consequently, the
method of penalizing code has been found more favorable
than the first method. A most straightforward method to have
a spare autoencoder is to penalize the pseudo ¢, norm of code
vectors but, due to the discrete nature of this pseudo norm,
the resulting problem may become intractable in most of real
world applications [12]. To overcome this problem ¢; norm,
the best convex approximation of pseudo ¢y norm, is used to
penalize the code vectors. Using ¢; norm of the code vectors
makes the cost function of autoencoder non-smooth which
limits the use of efficient gradient based optimization methods.
Consequently, few papers employ ¢; norm as regularizer and
try some closely related smooth approximation to this norm.

In [13], Student-t penalty is suggested as a smooth approxi-
mation of /; norm. Another approach to sparse autoencoders is
to penalize the average output of code elements over training
patterns by using a divergence metric such as Kullback-Leibler
[14]. One can easily show that denoising autoencoders also
tries to sparsify the codes [15]. Other types of regularizers have
also been proposed for autoencoders which result in enhanced
performance [2], [16].

In this paper, we address sparse autoencoder based on
penalizing ¢; norm of the code vector and propose a solution to
this non-smooth problem. The proposed method makes some
changes to the problem formulation and uses a block coordi-
nate descent strategy as a solution. This strategy breaks the
problem variables into two blocks. The first variables block,
which appears in non-smooth terms, is updated efficiently via
proximal mapping. The second variables block, coming with
the smooth term of cost function, is updated using gradient
descent method. In the proposed method, detailed in section II,
first a solution similar to the solution to the problem of simple
autoencoder is attained, in which no sparsity is imposed on the
code vector. Then, sparsity is gradually imposed on the code
vectors and a sparse autoencoder is formed. This procedure
demonstrates some interesting features that are discussed in
section II and supported by experiments presented in section
III. We then conclude the paper in section IV.

II. PROPOSED METHOD

Sparse autoencoder (SAE) is a mathematically constrained
autoencoder. Ideally sparse autoencoder problem is formulated
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as follows:
kS g0z 4 B0
argmin; S SO+ 51y
+FA(WOE+ W2 F) (1
where || - ||o stands for pseudo ¢y norm, 3 and A are hyper-

parameters which control the code sparsity and the weight
decay, respectively, IV denotes the number of training patterns,
W is weight matrix of i-th layer and x*), X(*) and z(*) rep-
resent the k-th training pattern, its reconstructed version and
code, receptively. When dimension of the code is sufficiently
small, the problem could be handled but, as dimension of the
code increases, the problem becomes intractable and relaxed
and approximate problems should be considered [17], [8].
The best choice which shows impressive results in the sparse
coding field is ¢; norm [18], [19]. Using this approximation,
we get into the following problem:

1 N 5 N
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arg min X X z
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Problem (2), as a suitable approximation to problem (1),
contains a non-smooth ¢; norm term and, consequently, is un-
solvable by the gradient method. Treating this non-smoothness
is the main issue addressed in this paper. We propose a novel
and efficient algorithm to directly solve problem (2) through a
series of sub-problems. First, we rewrite the problem in matrix
form:

1 5
argmin—||X — X||% + EHZIII F WO T + W)
01,00 N N
3)
where the matrices are defined as follows:

X = [x(1)7"~7x(N>] 75( = [ﬁ(1)77X(N)L zZ= [Z(l)w":z(N)]

and ¢, matrix norm is [|All; = 32, Y75, [Aijl, where r
and ¢ stand for the row and column numbers of the matrix,
respectively.

In order to deal with non-smooth terms in unconstrained
problem (3), we change the problem to equivalent constrained
optimization as follows:

arg min
01,02, Y

+A(WOZ + WP ||2) subjectto Y =Z (4

L s b
I = X+ Y

where we introduce a new matrix variable Y which links the
cost function to the constraint. This problem is solved via
penalty methods as follows [20]:

1 oo B
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where o > 0 is the penalty parameter. When o — 0, the
solution of L1-SAE coincides with those of problem (4). Let
we consider the solution to problem (5) as ¢ and 65 and
the solution to problem (2) as 67 and 65. Then we have
lim,—0 0 = 67 and lim,_,o 05 = 05.

Based on the above-mentioned equations, we first find
solutions to the L1-SAE problem and then decrease o toward
zero. To do this, we try to solve a series of sub-problems
(5) for decreasing values of «. Our proposed method to
solve these sub-problems is based on block coordinate descent
strategy. We divide variables into two sets, and then solve each
sub-problem in two steps. First, we keep fixed the variables
belonging to set 2 and run the minimization procedure based
on set 1 variables. In the next step, we just do the vice versa.

In the problem of LI-SAE, we choose Y as first block
variable and #; and 6, as the second block variable. We
initialize variables in set 2 and perform the following two
steps in each iteration:

Step 1: In this step we have the following optimization
problem:

. 1
Yo+ 1) = argmin LY+ oY -2 ©

where p is the iteration index of the optimization problem.
Problem (6) contains the non-smooth term of cost function,
which is not suitable for optimization by the gradient methods.
But, other optimization tools, like proximal mapping, can
efficiently solve the problem and is employed in our proposed
method. Before we continue, let us introduce the notion of
proximal mapping [21].

Definition 1 (Proximal mapping [21]). The proximal mapping
of a proper and lower semi-continuous function g : R™ —
(—inf, 4+ inf] ar x € R™ is defined as:

. 1
prox, (x) = argmin{g(u) + 3 [x — w3} ©)
ueRm™

The above definition could easily be extended to use for the
matrix functions. By comparing formulation (7) to problem
(6), we see a clear resemblance and the solution to sub-
problem (6) could simply be found as:

Y (p+1) = prox,(Z(p)) ®)

where g(A) = OJ‘V—BHAﬂl The proximal mapping of g(X)
has been formulated in the literature as [21]:

prox,(A) = Soft-Threshold a8 (A) )

where Soft-Threshold «s (-) is an element-wise function which
. N .

performs the following operation on each element of the

matrix:

Qi — LI\? if Qi > L]\?
Soft-ThresholdaTva (ai;) =<0 if |a;j] < a—]\?
aij—kO‘WB ifaij <—%

So the problem (6) is efficiently solve using the proximal
mapping 8.
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Step 2: In this step, the following optimization problem is
considered:

o1 &
01(p+1),02(p+1) = argmin —||X — X||%
01,00 N

1
+ 5o 1Y 2+ 1) = ZIE + MW+ [WPE) - 10)

As it can be seen, no non-smooth term is present in problem
(10) and it can be solved based on the gradient methods [10]
and natural gradient methods [22]. Error back-propagation
could also be utilized to evaluate the gradient efficiently. In our
proposed method, we use one iteration of the gradient descent
for this step. Based on the proposed method, we can find an
approximate solution to sub-problem (5) and use it to initialize
a similar sub-problem (5) with decreased «. Following this
procedure, we can find the solution to the problem (3) for
small values of a.. For simplicity, we choose a fixed decreasing
factor (f) and scale « using this factor for subsequent sub-
problems. The pseudo code of the proposed method is shown
in algorithm 1.

Algorithm 1 L1-SAE

1: procedure TRAINING SPARSE AUTOENCODER
Input: Training pattern matrix (X), Initial value for «
(a), decreasing factor of « (f), Maximum number of
reduction in « (T'), sparsity hyper-parameter (3), weight
decay hyper-parameter (), gradient descent step size (u),
Encoder and decoder functions
Initialization: p = 0, 0;(p), 62(p), t = 1
Output: Autoencoder parameters

2: while ¢t < T do

3 a=fl"1xa

4: while termination is met do

5: = p(p)

6: Compute Y (p + 1) through (8)

7: Compute 61 (p+1) and 02(p+ 1) through (10)
8: p=p+1

9: t=t+1

Complexity of the proposed method for solving each sub-
problem is affected by element-wise soft-thresholding opera-
tion in each step, which is highly parallelizable and could be
implemented efficiently. Besides, rather than solving a series
of sub-problems in full, we just need to use an approximate
solution to the problem by reducing the number of iterative
computations. Moreover, as our simulations show, the problem
is insensitive to small values of reduction factors and f ~ 0.6
can also lead to acceptable results. This will limit the number
of sub-problems needed to reach an approximate solution to
problem (2).

III. EXPERIMENTAL RESULTS

In this section, we test performance of the proposed sparse
autoencoder (L1SAE) over three benchmark image datasets as
follows:

e« MNIST handwritten digits [23]: This dataset contains

50000, 10000, and 10000 training, validation, and test
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TABLE I: Selected hyper-parameters of different autoencoders

Parameters B p A1 A2 o
AE - - 0.00005  0.0001 -
KLDSAE 1 0.01  0.00005 0.0001 -
ALISAE 3 - 0.00005  0.0001 -

DenAE - - 0.00005  0.0001 0.5
NCAE 3 0.05  0.0001  0.0001 -
LISAE 0.5 - 0.00005  0.0001 -

samples of hand written digits, respectively. All the
samples are 28 x 28 gray scale images, each represented
by a vector of size 784.

« NORB object recognition dataset [24]: This dataset con-
tains 24300 training and 24300 test samples. The samples
are 2 channel 96 x 96 images of 50 toys from five generic
categories: 1) four-legged animals, 2) human figure, 3)
airplanes, 4) trucks, and 5) cars. Similar to the procedure
used in [16], we take the inner 64 x 64, inner pixels of
samples, and resize them to 32 x 32 pixels. Thus, each of
the samples will contain 2 x 32 x 32 = 2048 elements.

e SVHN dataset of street view house numbers [25]: This
dataset contains 73257 training and 2603 test samples.
All the samples are 32 x 32 gray scale images, each
represented by a vector of size 1024.

The proposed method is compared with five other methods,
including: 1) Simple autoencoder (AE) introduced in [4], 2)
Sparse autoencoder based on smooth approximation of ¢y
norm by Student-t penalty (AL1SAE) introduced in [17], 3)
Sparse autoencoder based on minimizing Kullback-Leibler
divergence of average code elements from a fixed small
value (KLDSAE) introduced in [14], 4) Denoising autoencoder
introduced in [15], 5) Method introduced in [16] where non-
negativity is added to the weight matrix of KLDSAE method
(NCAE).

For unsupervised feature learning, we use our pro-
posed method to train a sparse autoencoder, and then
compare the learned features to those of other meth-
ods in terms of reconstruction error and degree of spar-
sity via Gini index [26]. All the methods were imple-
mented in Matlab using stochastic gradient descent on 1000
mini-batches in each epoch (except NCAE that we use
its code from https://github.com/ehosseiniasl/ Nonnegativity-
Constrained-Autoencoder-NCAE.git). We use logistic func-
tions for both encoder and decoder for all datasets. The sizes
of codes for MNIST, NORB and SVHN datasets are 196, 256,
and 256, respectively. Table I shows the best hyper-parameters
selected through searching over a grid for all methods.

Figures 1(a) and 1(b) show the result of reconstruction error
and sparsity over the test samples with corresponding standard
deviation for different methods, respectively. As expected,
simple autoencoder, which has no sparsity constraint (and
the lowest sparsity), comes with the lowest reconstruction
error (This method is added just as a reference for the
lowest possible reconstruction error). Among other meth-
ods, the LISAE comes with the lowest reconstruction error
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TABLE II: Mean and standard deviation of network accuracy pretrained using
different methods on MNIST, NORB and SVHN datasets.

MNIST NORB SVHN
Pretraining Mean (%) STD Mean STD Mean STD
AL1SAE 97.77 0.07 8519 046 80.82 0.19
KLDSAE 97.93 0.06 8646 033 81.15 0.11
DenAE 97.88 0.09 86.56 0.18 81.11 0.13
NCAE 97.98 0.04 86.68 0.19 8122 0.12
LISAE 98.05 0.06 86.85 024 8136 0.15

and highest sparsity simultaneously for MNIST and SVHN
datasets. For NORB dataset, while the reconstruction error of
the proposed method is not the best, it presents a significant
improvement to sparsity over the existing autoencoders. This
superiority originates from incremental complexity feature of
the proposed method. In the starting epochs, a dense code
is trained using the proposed method and receptive fields are
not localized. Each time « decreases, the algorithm tries to
prone the receptive fields of the previous sub-problem, so as
to increase the codes sparsity. In other words, the algorithm
gradually localizes the features and increases sparsity of the
codes. This procedure is shown in Figure 1(c) for several
receptive fields of autoencoder trained on MNIST dataset.
Accordingly, in this procedure, complexity is gradually fed
to the problem and we expect to enhance the efficiency (It
is to be noted that NCAE results are not shown in figure 1,
because its formulation to penalize weights is different from
that in other methods, so may not lead to a fair comparison
with different algorithms. However, we demonstrate its results
obtained from the subsequent experiment).

In the next experiment, we use different methods to pretrain
a deep supervised structure, and then fine tune the network
parameters using the stochastic gradient descent. The network
structure used for different datasets is as follows:

MNIST dataset : FCL(784) = FCL(196) = FCL(49) = FCL(10)
NORB dataset : FCL(2048) = FCL(256) = FCL(32) = FCL(5)
SVHN dataset : FCL(1024) = FCL(256) = FCL(64) = FCL(10)

As seen in table II, the proposed method presents higher
accuracy in all datasets, because of the more efficient method
employed for pretraining of network (the networks differ only
in pretraining method).

IV. CONCLUSION

We have proposed a new method to train a sparse autoen-
coder based on ¢; regularizer through a series of sub-problems
obtained using penalty method. In each sub-problems, to
handle non-smooth /; term in the learning cost function, we
adopt a block coordinate descent strategy which decomposes
the problem variables into two sets, such that one holds all
non-smooth terms and the other just deals with the smooth
terms. The first variable set is updated using the proximal
mapping, while the stochastic gradient descent is utilized to
update the second variable set. Our simulations on three image
datasets show that the proposed method presents a smaller
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Fig. 1: Average and standard deviation of test samples reconstruction error and Gini index for different methods and datasets with some selected receptive
fields evolution over MNIST dataset

reconstruction error and higher sparsity, as compared to those
of several well-known autoencoders. The proposed method has
also been evaluated in pretraining a deep structure which, after
fine-tuning, outperforms the conventional methods.
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