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Abstract—A method to accurately estimate the power spectral
density (PSD) of an unmanned aerial vehicle (UAV) is proposed,
in anticipation of being used for a UAV-mounted audio recording
system that clearly captures target sound while suppressing rotor
noise. The method utilises UAV rotor characteristics as well as
microphone recorded signals to combat practical limitations seen
in a previous study. The proposed method was evaluated on a
simulation platform modelled after the UAV used in the previous
study. Results showed that the proposed method was able to
estimate the rotor noise PSD to within 1.3-3.3 dB log spectral
distortion (LSD) regardless of the presence of surrounding sound
sources.

Index Terms—Microphone array, unmanned aerial vehicle,
source enhancement, power spectral density, rotor noise

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have recently gained
huge popularity for a wide range of applications. Among these,
it has shown to be exceptionally popular in filming [1], [2],
due to its small size and manoeuvrability. However, audio
recording using UAVs have shown to be challenging due to the
high noise levels radiated from the UAV rotors. This adds an
extra layer of challenge on top of removing potentially already
present ambient noise sources, such as wind, traffic, or even
unwanted speech.

Algorithms to extract clear signals from their noisy mixtures
have been studied and developed over many decades. One of
the major frameworks is the use of microphone arrays [3].
Several studies have attempted for localising sound sources
[4]–[8], or separating sound sources [9] using UAV-mounted
audio recording devices, however, very few focus on improv-
ing audio recording quality. A recent study presented by the
authors in [10] tackled speech enhancement utilising the well-
known framework beamforming with post Wiener filter [3].
The key to success is to accurately estimate the power spectral
density (PSD) of each sound source for calculating the Wiener
filter. While results were promising, the improvement was
still marginal, as the algorithm only used audio signals from
microphones which are already contaminated by a significant
amount of rotor noise. Furthermore, under practical scenarios,
each microphone will receive a weighted mixture of signals
from all present sound sources in the environment. Therefore,
minimising such errors introduced by practical complications,

as a mean of accurately estimating the UAV rotor noise PSDs
is necessary.

Fortunately, such noise is not random in nature. Further-
more, aerodynamic and aeroacoustic studies have shown that
there is a clear pattern closely linked to the rotor’s behaviour,
such as rotor speed [11], [12]. These can be measured using
appropriate sensors without being affected by acoustic signals.
Therefore, the rotor noise PSD can potentially be estimated
more accurately if the PSD is estimated from these non-
acoustical parameters of the rotors.

Recently, machine learning (ML) based methods for source
enhancement have gained considerable popularity. For exam-
ple, many studies utilised deep or recurrent neural networks
(DNN/RNN), or deep RNNs (DRNN) for monaural speech
separation [13], [14], multichannel speech enhancement [15],
[16], and speech recognition [17], [18], due to its potential to
model complex relationship between input features extracted
from acoustic signals observed by microphones and the target
sound source with high accuracy. Some ML studies estimate
the PSD of sound sources using the output of beamformers
[19], [20], and has found to deliver promising performance.

In this study, a method that utilises multisensory infor-
mation collected from the UAV to estimate the PSD of the
UAV rotor noise is proposed, taking both the rotor’s state
and microphone signals into account. To model the mapping
function from these rotor state information to the rotor noise
PSD, a regression tree [21] is used. It is a commonly used
non-parametric regression based ML technique that has the
advantage to estimate relatively complex patterns without
being overly computationally expensive. Since UAV noise has
a coherent, distinct pattern, such a method may be sufficient
for this purpose, especially when it is to be incorporated in
real-time signal processing for actual UAV recordings.

II. UAV SYSTEM AND OBSERVATION MODEL

A. Observation Model

Fig. 1 shows an overview of the UAV system used in this
study. The main objective for UAV based recording systems is
to extract clear target source signal from its microphone array
recordings, while suppressing surrounding interfering spatially
coherent noise arriving from L sources in different angles
(including noise generated by U (≤ L) UAV rotors) as well as
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Fig. 1. Audio recording UAV overview (top view).

ambient spatially incoherent noise [10]. Assuming M -sensor
microphone array observes signals, the short-time Fourier
transform (STFT) of the array’s input signals is expressed in
a vector form given by

x(ω, t) :=
[
X1(ω, t), · · · , XM (ω, t)

]T
= aθ0(ω)S(ω, t) +

U∑
u=1

aθu(ω)Nθu(ω, t)

+
L∑

n=U+1

aθn(ω)Nθn(ω, t) + v(ω, t), (1)

where T denotes the transpose, and Xm(ω, t) is the STFT of
the input signal of the m-th microphone. Similarly, S(ω, t),
Nθu(ω, t) and Nθn(ω, t) are the STFT of the target source
located at angle θ0, the u-th rotor noise source located at angle
θu, and the n-th spatially coherent interfering noise source
located at angle θn. ω and t denote the angular frequency
and frame index, respectively. aθ(ω, t) is a vector of transfer
functions (TF) between the source located at angle θ and
microphone m, i.e. aθ(ω) = [A1,θ(ω), · · · , AM,θ(ω)]

T , and
vθ(ω, t) = [V1(ω, t), · · · , VM (ω, t)]

T is a vector of incoherent
noises, where Vm(ω, t) is the incoherent noise observed by
the m-th microphone. The target source, all coherent noise
sources, and the incoherent noise are assumed to be mutually
uncorrelated.

Since the UAV is most likely to be used in outdoor
environments, sound propagation would be similar to a free
field where reflections are negligible. Therefore Am,θ(ω) is
modelled by plane waves given by Am,θ(ω) = ejωτθ,m , where
τθ,m is the time delay of the sound arrival from angle θ at
the m-th microphone with respect to a reference point on the
coordinate system. The problem assumes that the angles of
the target source and all noise sources are given a priori.

B. Source enhancement using beamforming with postfiltering

Following previous works, the method proposed in this
study also adopts the beamforming with postfiltering frame-
work. This section briefly explains the framework. Fixed
beamformers are applied to the input signal in order to
emphasise the sources in each direction, providing

Yl(ω, t) = wH
θl

(ω)x(ω, t), (2)

where H denotes the Hermitian transpose. The minimum
variance distortionless response (MVDR) beamformer [22] is
commonly used for the beamformer design, the filter weights
vector wθl(ω) at angle θl of which is given by

wθl(ω) =
R−1aθl(ω)

aθl
H(ω)R−1aθl(ω)

. (3)

Here, R is the normalised noise covariance matrix modelled
using the plane wave equation [3], and θl denotes the angle
at which the directivity of the l-th beamformer points. The
beamformer’s output Yl(ω, t) is then calculated. Despite no-
ticeable improvements in enhancing the target source signal,
Yl(ω, t) still contains a significant amount of rotor noise, and
other undesired source signals present. Thus, Wiener postfilter
is applied to the beamformer’s output. To design the Wiener
filter, PSD of the target sound source and other noise have to
be estimated. From (1) and (2), the PSD of the beamformer’s
output can be approximated as

φYl(ω, t)
∼= φYl,S(ω, t) +

U∑
u=1

φYl,Nθu (ω, t)

+

L∑
n=U+1

φYl,Nθn (ω, t) + φYl,V̄ (ω, t), (4)

where φYl,S(ω, t), φYl,Nθu (ω, t), φYl,Nθn (ω, t) and
φYl,V̄ (ω, t) are the PSD of the target source, u-th UAV
rotor noise, n-th non-UAV rotor coherent interfering
noise, and incoherent noise respectively. The Wiener filter
coefficients are then estimated as

H =
φ̂Yl,S

φ̂Yl,S +
∑

U
u=1φ̂Yl,Nθu +

∑
L
n=U+1φ̂Yl,Nθu + φ̂Yl,V

,

(5)

where the ·̂ operator denotes an estimate. Note that ω and t
are omitted for brevity in (5). Finally, the Wiener filter output
Z(ω, t) is obtained as

Z(ω, t) = H(ω, t)Y0(ω, t). (6)

III. PROPOSED METHOD

Although the ultimate goal is to utilise the estimated rotor
noise PSD to filter Y0(ω, t) to obtain a high-quality target
source signal, this study focuses on estimating the rotor noise
PSD alone. Naturally, rotor noise is the dominating sound
for most UAV audio recordings. However, it is also the most
predictable, and is directly related to its UAV characteristics,
allowing non-acoustic approaches to estimate its PSD without
disturbances from other sound sources, thereby improving es-
timation accuracy and robustness. Inherently, this should also
make PSD estimation of the remaining sound sources easier.
The proposed method is designed to estimate φYl,Nθu (ω, t)
taking advantage of these non-acoustic information. Due to
the complexity of the PSDs spectral pattern relationship, an
approach based on ML is adopted. This section discusses
the general framework, feature preparation and the mapping
function used.
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Fig. 2. Framework of the proposed method.

A. General framework and input features

Fig. 2 shows a block diagram of the proposed method.
Note that t is omitted for brevity in the figure. The method
retains the general beamforming to postfiltering framework,
with the section highlighted by the red dashed-box showing
the input/output mapping function utilised, which is the core
of the rotor noise PSD estimator. Two configurations of ML-
based mapping functions (m1 and m2) are investigated. The
motivation behind each configuration and their input feature
usage are presented below.
Configuration m1: The idea behind config. m1 is to use rotor
characteristics to facilitate estimation of the rotor noise PSD,
captured via sensor data. Thus config. m1 uses

• Rotor speed and acceleration (Ωu(t), αu(t)).

While m1 performed well (see Section IV-B for details), upon
closer observation of the rotor noise, it became clear that rotor
speed/acceleration cannot fully capture the characteristics of
the PSD spectra. Excluding hardware imperfections, additional
factors include, but are not limited to practical limitations
such as aliasing, or potentially uncaptured aeroacoustic effects.
Therefore, an extension of config. m1, config. m2, attempts to
capture these effects, in anticipation of further refining PSD
estimation accuracy. Ideally, such information is modelled
analytically. However, direct beamformer output PSD data has
shown to fit well for the purpose of this study.
Configuration m2: In addition to Ωu(t) and αu(t), config.
m2 also utilises

• Current/past frames of beamformer output PSD and PSD
gradient (φYl(ω, t), φYl,grad(ω, t)).

• Beamformer expected output PSD (φm1,Yl,Nθu
(ω, t)):

φYl(ω, t) contains rotor noise, as well as target and
interfering noise signals, and thus will not be practical
without a reference rotor noise only PSD. The output of

config. m1 fulfils this requirement. Consequently, config.
m1 cascades onto config. m2.

• Cue for non-UAV rotor noise activity (Cl,source(t)): A
logical input that utilises φm1,Yl,Nθu

(ω, t) to detect non-
UAV rotor noise related activity (e.g. speech or wind).
This is estimated as follows

Cl,source =

{
1 cl > cth
0 cl < cth

(7)

cl =

∫ 2π

0

max

 φYl(ω) − φ̂m1,Yl,Nθu
(ω) − φth∣∣∣φYl(ω) − φ̂m1,Yl,Nθu
(ω) − φth

∣∣∣ , 0
dω,

(8)

where cth is the overall activity threshold, and φcth is the
frequency band activity threshold in dB, both heuristically
tuned. Note that t is omitted for brevity in (7) and (8).

Note that for both the method in [10] and config. m1
only utilised a single form of input feature, while config.
m2 incorporated both forms. In summary, the method from
[10] is ”acoustic single-sensory”, m1 is ”non-acoustic single-
sensory”, and m2 is ”multisensory (acoustic/non-acoustic)”.

B. Input/output mapping

A model is required to map the input features to the
rotor noise PSD φYl,Nθu (ω, t). This is essentially a regression
problem. Whilst rotor noise PSDs have a clear, distinct pattern,
due to the multitude of tonal bands, each with their distinct
behaviour, the overall response possesses non-linear character-
istics, making it difficult to formulate a global solution. Non-
parametric regression is a simple yet effective solution to this
problem. However, techniques of this category can become
computationally expensive. Regression trees [21] work well
under these conditions, and have shown to fit well with the
problem of this study, and is therefore used for initial proof of
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TABLE I
SIMULATION PARAMETERS.

Sampling rate 48 kHz
STFT length (overlap shift) 2048 (1024)

Forgetting factor 0.3
# of beamformers 1
φcth threshold (dB) 15
cth threshold 2

TABLE II
SIMULATION DATA SPECIFICATIONS (* DENOTES m2 ONLY).

Training Testing
UAV speed range

(revolutions per minute)
3000-4000 3000-3300

# of target source
patterns

12 (6 male,
6 female)*

4 (2 male,
2 female)

# of interfering noise
patterns

8 (4 traffic,
4 music)*

4 (2 traffic,
2 music)

# of int. noise angles N/A 12
Input SRNR (dB) −10, 0, 10* −10, 0, 10
Input SINR (dB) −10, 5, 20* −10, 0, 10, 20

# of datasets 20 544
# of observations
for each dataset

8994
(192 sec)

276
(6 sec)

Total # of
observations

179880
(8994× 20)

150144
(276× 544)

concept. The regression trees are prepared for each indepen-
dent O frequency bins, and for each beamformer output. Thus,
a total of L × O regression trees are used, each satisfying a
minimum mean squared error (MMSE). The regression trees
are first grown, followed by pruning via validation using a
separate test dataset to avoid overfitting. Finally, an optimal
set of trees are selected for testing.

IV. SIMULATION

A. Simulation setup and test parameters

A simulation platform that mimics the UAV characteristics
from the previous study [10] was developed to evaluate
the performance of the proposed method. This includes the
microphone array used (see Fig. 1), which consists of a circular
front array of three equidistant microphones with a central
microphone, spanning a radius of 0.16 meters, and with the
array plane facing the target source. It also consists of a back
array of two microphones, 0.2 meters away from the front
array, that is 0.14 meters apart from each other. To provide
controllable and repeatable testing conditions, a UAV rotor
noise synthesiser using an additive variable-frequency wave
approach (loosely similar to [23]) was developed to simulate
the rotor noise as a function of rotor speed. This noise was
then mixed with a corpus of target source patterns before
multiplying with the TF.

Some simplifications to the UAV configuration were made.
Firstly, the PSD estimation of the proposed method focused
only on the beamformer output for the target source Y0(ω, t),
with the source limited to speech. Thus, only the front array
was used. Furthermore, all sound sources were assumed as
omnidirectional point sources in an ideal free field. Therefore,
they were multiplied with components in aθ(ω) described in
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Fig. 3. PSD estimation accuracy for different input SRNR and SINR.
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Fig. 4. PSD estimation accuracy for different interfering noise angle (at input
SRNR/SINR of 0 dB).

Section II-A. Lastly, only one rotor was used, with a speed
range replicating UAV under hover or slow travel.

Simulation parameter specifications are summarised in Ta-
ble I. Two metrics are introduced to quantify the sound source
input conditions: i) signal-to-rotor-noise-ratio (SRNR) and ii)
signal-to-interfering-noise-ratio (SINR) [10]. SRNR quantifies
the power ratio of the target source to the rotor noise, and
SINR quantifies this ratio to the coherent interfering noise
sources. These are measured at the central microphone in the
front array (see Fig. 1). To evaluate the performance error of
the proposed method against the previous method [10], the
log spectral distortion (LSD) [24] of the estimated rotor noise
PSD will be compared against the true rotor noise PSD (i.e. no
presence of target or interfering noises). Table II summarises
the parameters used to train and evaluate the ML mapping
functions.

B. Results and Discussion

Fig. 3 summarises the results for different input SRNRs
and SINRs. As expected, the previous method was greatly
affected by surrounding sound sources; the higher the SRNR
and lower the SINR, the higher the LSD. This is due to the
higher overall power of the surrounding sound sources relative
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to the rotor noise, leading to larger estimation error of the rotor
noise PSD. This effect, on the other hand, was minimal for the
proposed method, and is especially apparent with config. m1.
This is expected since it only takes rotor speed/acceleration
as inputs, both immune to sound. However, overall config.
m2 had lower estimation errors than m1, showing that the
additional input features in m2 played an important role in
refining the estimation.

Fig. 4 shows the results for different interfering noise source
angles. Similar to results in Fig. 3, interfering noise angles
had practically no effect towards config. m1, as opposed to
the previous method, where a high degree of variance was
seen. While performance was relatively similar, config. m2
was able to deliver a lower overall LSD for many occasions
significantly over m1. This is perhaps due to taking beam-
former output PSDs as an input, where its sharp directivity
effectively rejected disturbances away from the target source
angle. Although the previous method gave very low LSDs at
angles of ±90 and 180 degrees, this is expected as the sound
sources were well separated from each other, which is ideal
for the method’s spatially dependent characteristic. However,
it should be noted that such scenario is only possible if the
interfering noise sources remained stationary at the desired
angle.

Overall, the proposed methods reduced the fluctuation of
performance seen in the previous method by using the parame-
ters of the rotor’s motion, meaning the method has successfully
distinguished the rotor noise and other sound sources.

V. CONCLUSION

A UAV-characteristics-driven method was developed for
accurate estimation of the UAV rotor noise PSD. The method
utilised multisensory information from the UAV to estimate
the rotor noise PSD for each frequency bin via regression tree.
The performance of the method was evaluated via simulation
and has shown fair robustness over influences from target
source and other interfering noises. However, it should be
noted that given its simplified problem setup, this study
was merely intended for evaluating the method’s conceptual
feasibility, and thus development and optimisation for practical
use remains part of future study. This includes experimental
testing, optimisation of input features and using more elaborate
input/output mapping techniques.
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