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Abstract—In our previous work [17], we derived a novel
Bayesian weighted instrumental variable (WIV) estimator for
the three-dimensional bearings-only target motion analysis
problem. While the proposed approach has the desirable char-
acteristic of incorporating a priori information in the estimation
process and is proven to be approximately asymptotically
unbiased, this estimator has a batch structure which is generally
not suitable for online processing of measurements in practical
applications. Therefore, in this paper we develop a recursive
Bayesian WIV, which also uses an adaptive selective angle
measurement approach to increase its stability. Simulations
show that the proposed estimator outperforms the compared
Bayesian algorithms with similar computational complexity for
poorly observable scenarios.

Index Terms—Estimation theory, bearings-only target motion
analysis, Bayesian estimation, pseudolinear estimator, instru-
mental variables

Bearings-only tracking, also known as target motion anal-

ysis (TMA), involves estimating the state of a target (of-

ten position and velocity), from noise-corrupted bearing

measurements [1]. The nonlinear nature of the problem

and observability issues make this problem challenging and

difficult to solve [2].

Several Bayesian and non-Bayesian filtering techniques

have been developed to solve this nonlinear problem. Ex-

tended Kalman filter (EKF) [3], unscented Kalman filter

(UKF) [4], shifted Rayleigh filter (SRF) [5], and particle

filters [6] are some of the Bayesian algorithms applied to

this problem.

A simple non-Bayesian solution called the pseudolinear

estimator (PLE) was developed for this problem in [7]. The

PLE does not have the drawbacks of the conventional max-

imum likelihood estimator (MLE) [8] (high computational

complexity and potential divergence). However, it suffers

from severe bias problems. Subsequent improvements to the

conventional PLE appear to have remedied its bias problem

to some extent in two-dimensional (2D) geometries e.g.,

[8]- [10], and three-dimensional (3D) geometries e.g., [11]-

[14]. In particular, the batch weighted instrumental variable

estimator (WIV) has been used to remove the bias of the

PLE by employing an instrumental variable matrix, which

ideally is uncorrelated with the error vector e.g., [10], [11],

[15].

In our previous work [17], we noticed that although the 3D

WIV has desirable characteristics of being closed-form and

highly accurate, this estimator is non-Bayesian and cannot

incorporate prior information in the estimation process. Thus,

a batch Bayesian WIV estimator was developed [17] that

is approximately asymptotically unbiased and outperforms

its non-Bayesian counterpart. Nevertheless, as the proposed

Bayesian WIV is a batch technique, it is not suitable for

sequential processing of measurements. Recursive estimators

are generally preferred to their batch counterparts in wide-

spread practical applications as they are more computation-

ally efficient and thus more suitable for online processing

of measurements. Therefore, in this paper we develop a

recursive form for the Bayesian WIV and its two inter-

mediate estimators: Bayesian weighted PLE (WPLE) and

Bayesian bias-compensated WPLE (BCWPLE). Moreover,

an adaptive selective angle measurement approach (SAM) is

used to increase the stability of the resulting recursive WIV

estimator. The performance and computational-complexity of

the proposed Bayesian estimator are compared to that of the

EKF, UKF, and SRF in a poorly observable scenario. Results

indicate that the proposed Bayesian estimator outperforms

the compared Bayesian algorithms, while requiring compa-

rable computational resources.

The paper is organised as follows. Section II formulates

the 3D bearings-only TMA problem. The batch Bayesian

WIV is reviewed in Section III. Section IV presents the

proposed recursive Bayesian WIV algorithm. The simulation

results in Sections V are followed by concluding remarks in

Section VI.

I. PROBLEM FORMULATION

In this paper, we assume the target travels with a constant

velocity during the measurement period. Defining the target

state vector at time k as xk = [xk, yk, zk, ẋk, ẏk, żk]
T , the

target state model is written as

xk+1 = Fxk, F =

[

I3 TI3
03 I3

]

, (1)
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where T denotes the time interval between consecutive

measurements and k = 1, 2, . . . is the measurement time

index. Moreover, I3 is the 3 × 3 identity matrix and 03 is

the 3 × 3 zero matrix. Note that there is no process noise

involved in the target motion given in (1) as the target motion

model is assumed to be purely deterministic.

The state vector x0 at time k = 0 is assumed to be

a Gaussian random variable with known mean x̄0 and

covariance Σ0. i.e., x0 ∼ N (x0; x̄0,Σ0). Furthermore, the

range between the target and receiver rk is constrained by a

maximum rmax and minimum rmin range.

At time index k, noisy bearing θ̃k and elevation φ̃k

measurements are collected by a moving observer, with a

known state vector xo
k = [xo

k, y
o
k, z

o
k, ẋ

o
k, ẏ

o
k, ż

o
k]

T , where

x
o,p
k = [xo

k, y
o
k, z

o
k]

T and x
o,v
k = [ẋo

k, ẏ
o
k, ż

o
k]

T are respec-

tively the observer position and velocity. The measurement

model for the bearing and elevation angle measurements is

zk = h(xk) + nk, k = 1, 2, . . . (2)

where

zk =
[

θ̃k, φ̃k

]T

, nk = [nθ,k, nφ,k]
T
,

h(xk) =

[

tan−1

(

∆yk
∆xk

)

, tan−1

(

∆zk
√

∆x2
k +∆y2k

)]T

.

(3)

Here ∆xk = xk − xo
k,∆yk = yk − yok,∆zk = zk − zok and

nθ,k and nφ,k are the measurement noises which are assumed

to be zero mean white Gaussian with variances σ2
θk

and σ2
φk

,

respectively. The elevation and bearing measurement noises

are also assumed to be uncorrelated.

We are interested in the recursive estimation problem in

this paper. The problem of interest is to recursively estimate

the state vector xk from measurements {z1, . . . , zk}.

II. BACKGROUND

In our previous work [17], we first developed a batch

closed-form pseudolinear estimator. The main idea was to

combine the prior information with the likelihood of pseudo-

linear measurements using Bayes’ Theorem. The closed-form

Bayesian WPLE estimate at time zero given measurements

up to k is given by [17]

x̂
WPLE
0|k =

(

AT
kΣ

−1

k Ak +Σ
−1

0

)−1

(AT
kΣ

−1

k Zs
k +Σ

−1

0 x̄0),

(4)

where Ak, Σk, and Zs
k respectively denote the system

matrix, covariance matrix and pseudomeasurement vector

Ak =
[

aT
1 , . . . ,a

T
k

]T

2k×6
,Σk = diag {y1, . . . ,yk}2k×2k

Zs
k =

[

(zs1)
T , . . . , (zsk)

T
]T

2k×1
,

(5)

where

ak =

[

c̃T1,kMk

c̃T2,kMk

]

,yk =

[

y1,k 0

0 λ2
k r̄

2(1− cos2 φ̃kµ
2
k)

]

,

zsk =

[

c̃T1,kx
o,p
k

c̃T2,kx
o,p
k

]

,

(6)

y1,k =

{

r̄2 cos2(π
2
− ε) µ2

k if π
2
− ε < |φ̃k| <

π
2
+ ε,

r̄2 cos2 φ̃k µ2
k otherwise,

(7)

c̃2,k = [sin φ̃k cos θ̃k, sin φ̃k sin θ̃k,− cos φ̃k]
T ,

c̃1,k = [sin θ̃k,− cos θ̃k, 0]
T ,Mk =

[

I3 kTI3
]

.
(8)

Here r̄ is the prior mean range, ε > 0 is set to a small fixed

value and

µ2
k =

1

2

(

1− exp(−2σ2
θk
)
)

, λ2
k =

1

2

(

1− exp(−2σ2
φk
)
)

.

Despite its simplicity, the WPLE solution is biased. In order

to reduce the bias, we proposed a bias-compensated WPLE

(BCWPLE) x̂
BCWPLE
0|k [17] by estimating the instantaneous

bias ζ̂k and subtracting it from the estimator.

x̂
BCWPLE
0|k = x̂WPLE

0|k − ζ̂k. (9)

The instantaneous bias is calculated as

ζ̂k = −
(

AT
kΣ

−1

k Ak +Σ
−1

0

)−1

Kk, (10)

where

Kk =
1

r̄

k
∑

i=1

MT
i

(

ŵiψ̂i + f̂ i + κ̂i

)

. (11)

Here we have

ŵk =
µ2
k sin(2φ̂k)

4λ2
k(1 − cos2 φ̂kµ2

k)
, κ̂k =

1

cos φ̂k

[

cos θ̂k, sin θ̂k, 0
]T

,

(12a)

ψ̂k =
[

− sin φ̂k cos θ̂k,− sin φ̂k sin θ̂k, cos φ̂k

]T

, (12b)

f̂k = [cos φ̂k cos θ̂k, cos φ̂k sin θ̂k, sin φ̂k]
T . (12c)

The estimated parameters θ̂k and φ̂k are obtained using the

WPLE as an initial estimate:

θ̂k = tan−1

(

∆ŷk
∆x̂k

)

, φ̂k = tan−1

(

∆ẑk
√

(∆x̂k)2 + (∆ŷk)2

)

,

(13)

where [∆x̂k,∆ŷk,∆ẑk]
T = Mkx̂

WPLE
0|k − x

o,p
k . The bias-

compensated estimator can significantly reduce the bias;

however, it might still be biased as it uses estimated param-

eters instead of true ones. To address this drawback, a batch

Bayesian WIV estimator was proposed, which uses an in-

strumental variable matrix Gk with desirable characteristics

to reduce the bias. The Bayesian WIV, which was shown to

be approximately asymptotically unbiased, is given by [17]

x̂
WIV
0|k =

(

GT
kΣ

−1

k Ak +Σ
−1

0

)−1 (

GT
k Σ

−1

k Zs
k +Σ

−1

0 x̄0

)

,

(14)

where

Gk =
[

gT1 , . . . , g
T
k

]T

2k×6
,Σk = diag {y1, . . . ,yk}2k×2k ,

(15)

gk =

[

ĉ
T
1,kMk

ĉ
T
2,kMk

]

,yk =

[

y1,k 0

0 λ2
k r̂

2
k(1 − cos2 φ̂kµ

2
k)

]

,

(16)
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ĉ2,k = [sin φ̂k cos θ̂k, sin φ̂k sin θ̂k,− cos φ̂k]
T ,

ĉ1,k = [sin θ̂k,− cos θ̂k, 0]
T ,

(17)

y1,k =

{

r̂2k cos
2(π/2− ε) µ2

k if π
2
− ε < |φ̂k| <

π
2
+ ε,

r̂2k cos
2 φ̂k µ2

k otherwise,
(18)

Note that Gk is constructed by substituting the estimated

bearing θ̂k and elevation φ̂k angles for the corresponding

noisy counterparts in the system matrix Ak. The estimated

bearing, elevation, and range are obtained using the x̂
BCWPLE
0|k

as

θ̂k = tan−1

(∆ŷk
∆x̂k

)

, φ̂k = tan−1

( ∆ẑk
√

(∆x̂k)2 + (∆ŷk)2

)

,

r̂xk = ‖Mkx̂
BCWPLE
0|k − xo,p

k ‖, r̂k =







rmax if r̂xk > rmax,
rmin if r̂xk < rmin,
r̂xk otherwise.

[∆x̂k,∆ŷk,∆ẑk]
T =Mkx̂

BCWPLE
0|k − xo,p

k .
(19)

III. THE PROPOSED RECURSIVE BAYESIAN ESTIMATOR

Since recursive estimators are more suitable for practical

applications, in this section we derive a recursive coun-

terpart (see subsection III-C) for the batch Bayesian WIV

[17] summarised in the previous subsection. The recursive

WIV uses recursive BCWPLE as an initial estimate in each

recursion. Therefore we also obtained the recursive forms for

the intermediate estimators, Bayesian WPLE and Bayesian

BCWPLE in Subsections III-A and III-B, respectively.

A. Recursive Bayesian Weighted Pseudolinear Estimator

The aim of this subsection is to derive a recursive solution

for the batch WPLE solution given in (4). For this purpose,

first a recursive form is driven for the P 0|k defined as

P 0|k =
(

AT
k Σ

−1

k Ak +Σ
−1

0

)−1

. (20)

Remark 1: To be consistent with the terminology used in

[16], we refer to P 0|k as covariance matrix. However, note

that this is not strictly the covariance associated with the

WPLE.

The covariance matrix P 0|k+1 at time zero given mea-

surements up to k + 1 can be written as

P 0|k+1 =
(

AT
kΣ

−1

k Ak + aTk+1y
−1

k+1
ak+1 +Σ

−1

0

)−1

,

(21a)

=
(

(P 0|k)
−1 + aT

k+1y
−1

k+1
ak+1

)−1
, (21b)

where we have used (20). Using the matrix inversion lemma

[18] in (21b), we have

P 0|k+1 = (I −W k+1ak+1)P 0|k, (22)

where

W k+1 = P 0|ka
T
k+1

(

ak+1P 0|ka
T
k+1 + yk+1

)−1
. (23)

Rewriting (4) for k + 1 measurements and using (22) in it,

the state vector at time zero can be written as

x̂
WPLE
0|k+1 = P 0|k+1

(

AT
kΣ

−1

k Zs
k + a

T
k+1y

−1

k+1
zsk+1 +Σ

−1

0 x̄0

)

,

(24a)

= P 0|k+1

(

AT
k Σ

−1

k Zs
k +Σ

−1

0 x̄0

)

+ P 0|k+1a
T
k+1y

−1

k+1
zsk+1.

(24b)

Using (22) in (24b) results in

x̂
WPLE
0|k+1 = (I −W k+1ak+1)P 0|k

(

AT
kΣ

−1

k Zs
k +Σ

−1

0 x̄0

)

+ P 0|k+1a
T
k+1y

−1

k+1
zsk+1.

(25)

Using the alternative expression for W k+1 as [16]

W k+1 = P 0|k+1a
T
k+1y

−1

k+1
, (26)

and observing that

x̂
WPLE
0|k = P 0|k

(

AT
kΣ

−1

k Zs
k +Σ

−1

0 x̄0

)

, (27)

(25) can be expressed as

x̂
WPLE
0|k+1 = x̂WPLE

0|k +W k+1(z
s
k+1 − ak+1x̂

WPLE
0|k ). (28)

B. Recursive Bayesian Bias-Compensated Weighted Pseudo-

linear Estimator

Given the recursive form for the WPLE in the previous

subsection, in order to derive a recursive version of the batch

BCWPLE, we just need to develop a recursive form for the

estimated instantaneous bias. Using (20), the instantaneous

bias given in (10) can equivalently be expressed as

ζ̂k = −P 0|kKk. (29)

Assuming the terms P 0|k and Kk are available and have

been used for calculating the instantaneous bias at time k,

we would like to obtain P 0|k+1 and Kk+1 to calculate the

instantaneous bias at time k+ 1. Note that the recursion for

P 0|k+1 is given in (22) and the recursion for Kk+1 can

simply be written as

Kk+1 =Kk +
MT

k+1

r̄

(

ŵk+1ψ̂k+1 + f̂k+1 + κ̂k+1

)

.

(30)

Hence the recursive Bayesian BCWPLE is summarised as:

Given the estimated state at time zero given k measurements,

P 0|k and the vector Kk, the state estimate of BCWPLE at

time zero given k + 1 measurements is obtained as:

W k+1 = P 0|ka
T
k+1

(

ak+1P 0|ka
T
k+1 + yk+1

)−1
,

x̂
WPLE
0|k+1 = x̂WPLE

0|k +W k+1(z
s
k+1 − ak+1x̂

WPLE
0|k ),

P 0|k+1 = (I −W k+1ak+1)P 0|k,

Kk+1 =Kk +
MT

k+1

r̄

(

ĝk+1ψ̂k+1 + ûkf̂k+1 + κ̂k+1

)

,

x̂
BCWPLE
0|k+1 = x̂WPLE

0|k+1 + P 0|k+1Kk+1.
(31)

The estimated bearing θ̂k+1 and elevation φ̂k+1 angles used

in (31) can be approximated similar to (19), by using the

BCWPLE at previous time index x̂
BCWPLE
0|k .
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C. Recursive Bayesian WIV Estimator

In this section a recursive form is presented for the batch

Bayesian WIV estimator given in (14). Denoting

C0|k =
(

GT
kΣ

−1

k Ak +Σ
−1

0

)−1

(32)

and using a similar approach to the one used in Subsection

III-A (Deriving the recursion for the C0|k using matrix

inversion lemma and then calculating the recursive form for

the x̂
WIV
0|k .), the recursive WIV can be written as

W k+1 = C0|kg
T
k+1

(

ak+1C0|kg
T
k+1 + yk+1

)−1
, (33a)

x̂
WIV
0|k+1 = x̂WIV

0|k +W k+1(z
s
k+1 − ak+1x̂

WIV
0|k ), (33b)

C0|k+1 = (I −W k+1ak+1)C0|k. (33c)

Here yk+1 and gk+1 are calculated using (16). The estimated

bearing, elevation and range are estimated similar to (19),

but using the BCWPLE at time k + 1 as an initial estimate.

Similar to Remark 1, note that the C0|k is not strictly the

covariance associated with the WIV. Due to the assumption

of constant velocity, the target state at time k + 1 is given

by

x̂
WIV
k+1|k+1 = F k+1x̂

WIV
0|k+1.

Similar equations can be written for the WPLE and BCW-

PLE.

When the observability is poor, the estimated bearing

and elevation angles used in the WIV may be erratic and

have large errors, which can have an adverse effect on the

performance of the WIV. To address this problem, recently

a selective angle measurement (SAM) approach has been

proposed [12]. Using a similar approach, to increase the

stability of the recursive WIV and to avoid using inaccurate

estimated values, the estimated bearing and elevation angles

will respectively be replaced by the noisy bearing and

elevation measurements, if the estimated angles deviate too

much from their noisy counterparts:

θ̂k =

{

θ̂k if |θ̂k − θ̃k| < α1,k,

θ̃k otherwise,
(34a)

φ̂k =

{

φ̂k if |φ̂k − φ̃k| < α2,k,

φ̃k otherwise.
(34b)

Selecting the thresholds α1,k and α2,k plays an important

role in the performance of the WIV estimator. If these

thresholds are chosen to be very large, the estimator reduces

to the basic WIV, whereas if they are too small, the WIV

estimator reduces to the WPLE, increasing the bias of the

estimator. Usually α1,k and α2,k are chosen proportional to

their measurement noise standard deviations [12], i.e.,

α1,k = βkσθk , α2,k = βkσφk
. (35)

In this work, the parameter βk is chosen adaptively using

the norm of the difference between the input and output of

the recursive WIV in each recursion ek = ‖x̂WIV
0|k − x̂WIV

0|k−1‖,
according to the following scheme:

βk =















5 ek < 1.5 km,
4 if 1.5 ≤ ek < 2 km,
3 if 2 ≤ ek < 2.5 km,
2 if ek > 2.5 km.

(36)

When the observability is very low, the estimated values can

be erratic, thus, it is better to use the noisy counterparts and

therefore smaller values of βk are used. The low observability

implies that the difference between the current and previous

WIV estimate, i.e., ek is usually large and thus βk is chosen

to be small. However, when the observability of the scenario

is good, the estimated values might be more reliable and the

error between input and output ek is relatively small implying

that larger values can be chosen for βk.

IV. SIMULATION RESULTS

This section compares the performance of the proposed

recursive Bayesian WIV to that of the EKF, UKF, and SRF

using 4000 Monte Carlo (MC) runs. The first performance

metric is the root-mean-squared (RMS) position error [19].

The second evaluates the number of divergent tracks where

a track is considered to be divergent if its estimated target

location error at two consecutive measurement times exceeds

the threshold of 15000 m.

Suppose the mean range in each MC trial is chosen

according to r̄ = N (rt, σ
2
r ), where rt is the true range

and σr = 3435 m is the initial range standard deviation.

The minimum and maximum ranges are respectively 100 and

12000 m. The maximum target velocity for the x and y axes

re set to V1,max = 5.14 m/s (10 knots) and for the z axis

is set to V2,max = 0.51 m/s (0.1 knots). The mean x̄0 and

covariance Σ0 are obtained in a manner similar to [17].

The simulated target-observer geometry is depicted in Fig.

1. Initially located at the origin, the observer travels in a hor-

izontal plane along the x-axis with a constant speed of 2.57
m/s (5 knots), while collecting the first 15 measurements.

After executing a coordinated-turn with a turn rate of 1 deg/s

for 2 scans, it collects the final 15 measurements. Starting

at [8000, 6000,−400]T m, the target follows a linear path

with a constant speed of 2.57 m/s (5 knots) at −135◦ course

with respect to x-axis throughout the observation period.

Note that the difference between the depth of the target and

observer is 400 m. This scenario is poorly observable as the

ownship trajectory has only one manoeuvre and its second

leg is almost collinear with the target trajectory.

The RMS position error of the recursive WIV is compared

to that of the EKF, UKF, and SRF in Fig. 2. As this figure

shows, the WIV outperforms all the compared algorithms and

meets the CRLB towards the end of the scenario. Moreover,

comparing the number of divergent tracks in Table I shows

that EKF, UKF, and SRF produce divergent tracks (Although

the number of divergent tracks for the UKF is significantly

lower than that of the SRF and EKF.), while the proposed

WIV produces none.
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Fig. 1. Scenario for the results shown in Fig. 2.

TABLE I
TRACK DIVERGENCE RESULTS AND RELATIVE COMPUTATION TIME OF

THE EKF, UKF, SRF AND FOR THE SCENARIO GIVEN IN FIG. 1.

Algorithm EKF UKF SRF WIV

Number of 243 3 59 0

diverged tracks

Relative computation 1 1.6 1.46 1.07
time to the EKF

After comparing the estimation performance, we also

compared the computation time of the UKF, SRF, and the

proposed approach relative to that of the EKF in Table I.

This table shows that the WIV is faster than the UKF and

SRF and is comparable to that of the EKF.

V. CONCLUSION

This paper develops a recursive Bayesian estimator that

is computationally cheaper and more suitable for practical

applications compared to its batch counterpart developed in

our earlier work [17]. Simulation results indicate that the

proposed algorithm outperforms the EKF, UKF, and SRF

in the simulated poor observable geometry, while requiring

comparable computational resources.
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