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Abstract—In the context of linear discrete state-space (LDSS)
models, we generalize a result lately introduced in the restricted
case of invertible state matrices, namely that the linear minimum
variance distortionless response (LMVDR) filter shares exactly
the same recursion as the linear least mean squares (LLMS)
filter, aka the Kalman filter (KF), except for the initialization. An
immediate benefit is the introduction of LMVDR fixed-point and
fixed-lag smoothers (and possibly other smoothers or predictors),
which has not been possible so far. This result is particularly
noteworthy given the fact that, although LMVDR estimators
are sub-optimal in mean-squared error sense, they are infinite
impulse response distortionless estimators which do not depend
on the prior knowledge on the mean and covariance matrix of the
initial state. Thus the LMVDR estimators may outperform the
usual LLMS estimators in case of misspecification of the prior
knowledge on the initial state. Seen from this perspective, we also
show that the LMVDR filter can be regarded as a generalization
of the information filter form of the KF. On another note,
LMVDR estimators may also allow to derive unexpected results,
as highlighted with the LMVDR fixed-point smoother.

I. INTRODUCTION

We consider the general class of linear discrete state-space
(LDSS) models represented with the state and measurement
equations, respectively1,

xk = Fk−1xk−1 +wk−1 (1a)
yk = Hkxk + vk (1b)

where the time index k ≥ 1, xk is the Pk-dimensional state
vector, yk is the Nk-dimensional measurement vector and
the model matrices Fk and Hk are known. Unless otherwise
stated, the process noise sequence {wk} and the measurement
noise sequence {vk}, as well as the initial state x0 are
random vectors with arbitrary distributions but at least known
covariance and cross-covariance matrices. The process and
the measurement noise sequences have zero-mean values and
the initial state has a known mean value. The objective is to
estimate xk based on the measurements and our knowledge

This work has been partially supported by the by the DGA/MRIS
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1Hereinafter, scalars, vectors and matrices are represented, respectively, by
italic, bold lowercase and bold uppercase characters. [A B] and

[A
B

]
denote

the matrix resulting from the horizontal and the vertical concatenation of A
and B, respectively. The matrix resulting from the vertical concatenation of k
matrices A1, ... , Ak of same column number is denoted Ak . E [·] denotes
the expectation operator. If x and y are two complex random vectors: a)
Cx, Cy and Cx,y are respectively the covariance matrices of x, of y and
the cross-covariance matrix of x and y, b) Cx|y , Cx −Cx,yC

−1
y CH

x,y ,
provided that Cy is invertible.

of the model dynamics. If the estimate of xk is based on
measurements up to and including time l, we denote the
estimator as x̂k|l , x̂k|l (yl) where yT

l =
(
yT
1 , . . . ,y

T
l

)
, and

we use the term estimator to refer to the class of algorithms
that includes filtering, prediction, and smoothing. A filter
estimates xk based on measurements up to and including time
k. A predictor estimates xk based on measurements prior to
time k. A smoother estimates xk based on measurements prior
to time k, at time k, and later than time k.

Since the seminal paper of Kalman [1], it is known that,
if {wk}, {vk} and x0 verify the following uncorrelation
conditions [1][2][3]:

Cx0,wk
= 0, Cx0,vk

= 0, Cwl,vk
= 0,

Cvl,vk
= Cvk

δlk, Cwl,wk
= Cwk

δlk, (2)

and are Gaussian, the minimum mean squared error (MSE)
filter of xk (1a) has a recursive predictor/corrector format:

x̂b
k|k = Fk−1x̂

b
k−1|k−1+Kb

k

(
yk −HkFk−1x̂

b
k−1|k−1

)
, (3)

∀k ≥ 1, so-called the Kalman filter (KF)2. Even if the noises
are non-Gaussian, the KF is the linear least mean squares
(LLMS) filter of xk. As the computation of the KF depends
on prior information on E [x0] and on Cx0

[2][3], the KF
can be looked upon as an ”initial state first and second
order statistics” matched filter [4]. However in numerous
applications E [x0] and/or Cx0 is unknown. A commonly
used solution to circumvent this lack of prior information is
the Fisher initialization [5][6, §II]. The Fisher initialization
consists in initializing the KF recursion at time k = 1 with
the best linear unbiased estimator (BLUE) of x1 associated
to the measurement model (1b), where x1 is regarded as a
deterministic unknown parameter vector. In the deterministic
framework, the BLUE of x1 is also known as the linear mini-
mum variance distortionless response (LMVDR) estimator of
x1 [7, §5.6][8]. If H1 and Cv1

have full rank, the Fisher
initialization yields:

x̂b
1|1 = Pb

1|1H
H
1 C−1v1

y1, Pb
1|1 =

(
HH

1 C−1v1
H1

)−1
. (4)

A particularly noteworthy feature of this alternative initializa-
tion of the KF (4) is that it may yield the stochastic LMVDR
filter, which shares the same recursion as the KF, except at

2The superscript b is used to remind the reader that the value under
consideration is the ”best” one according to a criterion previously defined.
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time k = 1. Indeed, authors in [4] have lately shown that,
under mild regularity conditions on the noises covariance
matrices, this property holds for the restricted subset of LDSS
models for which Fk, k ≥ 1, are invertible. Unfortunately,
this restricted subset of LDSS models does not include fixed-
point and fixed-lag smoothers (and possibly other smoothers or
predictors) which are obtained by running the KF on modified
LDSS models [2, §9] incorporating at least one non invertible
state matrix.

As shown in the present paper, the invertibility of Fk, k ≥ 1,
is actually not required, provided that H1 has full rank, which
is a substantial extension of [4]. The proposed extension is
based on a different approach than the one previously used in
[4] which allows to derive the key results in an easily com-
prehensible manner. An immediate benefit is the introduction
of LMVDR fixed-point and fixed-lag smoothers (see §III.C,
and possibly other smoothers or predictors, which is left for
future research). This result is particularly noteworthy given
the fact that, although LMVDR estimators are sub-optimal in
MSE sense, they are infinite impulse response distortionless
estimators which do not depend on the prior knowledge on
E [x0] and Cx0 . Thus the LMVDR estimators may outperform
the usual LLMS estimators in case of misspecification of
the prior knowledge on x0 (see §III-A). Seen from this
perspective, we also show that the LMVDR filter can be
regarded as a generalization of the information filter form
of the KF (see §III.B), since the LMVDR filter exists under
more general assumptions. Last but not least, the interest of
the LMVDR estimators can go beyond the property of being
robust to uncertainties on the initial state as highlighted in
§III.D.

A. Signal model

As in [4][7, §5.1], we adopt a joint proper (proper and
cross-proper) complex signals assumption for the set of vectors
(x0, {wk} , {vk}) which allows to resort to standard estima-
tion in the MSE sense defined on the Hilbert space of complex
random variables with finite second-order moment. A proper
complex random variable is uncorrelated with its complex
conjugate [7]. Moreover, any result derived with joint proper
complex random vectors are valid for real random vectors
provided that one substitutes the matrix/vector transpose con-
jugate for the matrix/vector transpose [7, §5.4.1]. First, as (1a)
can be rewritten as, ∀k ≥ 2:

xk = Bk,1x1 +Gkwk−1, Gkwk−1 =
k−1∑
l=1

Bk,l+1wl, (5)

Gk ∈MC (Pk,Pk−1) , Bk,l =

∣∣∣∣∣∣
Fk−1Fk−2...Fl, k > l

I , k = l
0 , k < l

,

where Pk =
∑k

l=1 Pl, an equivalent form of (1b) is:

yk = Akx1 + nk, Ak = HkBk,1,∣∣∣∣ n1 = v1

nk = vk +HkGkwk−1, k ≥ 2
. (6a)

Second, (1b) can be extended on a horizon of k points from
the first observation as:

yk =

 y1

...
yk

 =

 A1

...
Ak

x1+

 n1

...
nk

 = Akx1+nk, (6b)

yk,nk ∈ CNk , Ak ∈ CNk×Pk , Nk =
∑k

l=1Nl.

II. LMVDR FILTER FOR LDSS MODELS

In this section, we consider a completely different approach
than the one previously used in [4]. Indeed, we provide a
general definition of a distortionless filter in the context of
LDSS models (7), which encompasses the definition used in
[4]. And, it is the combination of this general definition with
the Joseph stabilized version of the covariance measurement
update equation that allows to prove that, whenever it exists,
the LMVDR filter shares the same recursion as the KF except
at initialization.

A. A general definition of the LMVDR filter

We adopt the notation used in the deterministic framework
for the LMVDR filter [7, §5.6][8] to stress the fact that the
LMVDR filter is different from the LLMS filter, aka the KF.
Indeed, for LDSS models one can define a ”state-former”
in the same way as a beamformer in array processing or a
frequency-bin former in spectral analysis [7, §5.6][8], that is
Wk ∈ CNk×Pk yielding the state vector W

H

k yk, which can
be recasted as (6b):

W
H

k yk =
((

W
H

k Ak

)
x1 +Gkwk−1

)
+W

H

k nk−Gkwk−1.

Therefore, according to (5), a filter Wk is distortionless iff:

W
H

k yk = xk+W
H

k nk−Gkwk−1 ⇔ W
H

k Ak = Bk,1. (7)

If H1 is full rank, the set of distortionless state-formers is non
empty. Indeed, if W1 = H1

(
HH

1 H1

)−1
, then:(

W1B
H
k,1

)H
y1 = xk +

(
W1B

H
k,1

)H
v1 −Gkwk−1,

is a distortionless state-former. Therefore, there exists a best
distortionless state-former in the MSE sense, aka the LMVDR
filter, which minimizes the error covariance matrix

Pk|k
(
Wk

)
= E

[(
W

H

k yk − xk

)(
W

H

k yk − xk

)H]
(8)

w.r.t. the Löwner ordering [9] under linear constraints (7):

W
b

k = argmin
Wk

{
Pk|k

(
Wk

)}
s.t. W

H

k Ak = Bk,1. (9)

Note that (9) is equivalent to:

W
b

k = argmin
Wk

{
E
[
r̂k (r̂k)

H
]}

s.t. W
H

k Ak = Bk,1,

r̂k = W
H

k nk −Gkwk−1. (10)
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Since the KF is the solution of the following unconstrained
minimization problem [1][2][3]:

Kb

k = argmin
Wk

{
Pk|k

(
Wk

)}
, (11)

it follows that the LMVDR filter (9) is sub-optimal in MSE
sense in comparison with the KF (11). Let us recall that, if
one considers the following breakdown of Wk:

Wk =

[
Dk−1

Wk

]
,

{
Dk−1 ∈ CNk−1×Pk

Wk ∈ CNk×Pk
, (12)

then the KF x̂b
k|k = KbH

k yk, Kb

k =
[Db

k−1

Kb
k

]
(11), can be

recasted in the convenient recursive predictor/corrector form
(3) where Kb

k =
(
Kb

k

)H
.

B. LMVDR filter for LDSS Models

It is known that, under assumptions (2), the error covari-
ance matrix (8) of any linear filter x̂k|k = Wkyk satisfies
the Joseph stabilized version of the covariance measurement
update equation [1][2][3]:

Pk|k
(
Wk

)
= Qk−1

(
Dk−1,Wk

)
+WH

k Cvk
Wk

+
(
I−WH

k Hk

)
Cwk−1

(
I−HH

k Wk

)
, (13a)

where:

Qk−1
(
Dk−1,Wk

)
= E

[
q̂k−1q̂

H
k−1
]
,

q̂k−1 = D
H

k−1yk−1 −
(
I−WH

k Hk

)
Fk−1xk−1. (13b)

As shown hereinafter, the covariance update equation (13a)
allows to breakdown the initial constrained minimization prob-
lem (9) into two separable minimization problems: a first
constrained minimization problem w.r.t. Dk−1, namely:

D
b

k−1 = arg min
Dk−1

{
Qk−1

(
Dk−1,Wk

)}
s.t. W

H

k Ak = Bk,1,

(14a)
where D

b

k−1 , D
b

k−1 (Wk), followed by a second uncon-
strained minimization problem w.r.t. Wk, namely:

Wb
k = argmin

Wk

{
Pk|k

(
D

b

k−1,Wk

)}
, (14b)

where Pk|k
(
Dk−1,Wk

)
, Pk|k

(
Wk

)
.

• Solution of (14a)
Firstly, let us notice that q̂k−1 in (13b) can be recasted as:

q̂k−1 = D
H

k−1Ak−1x1 −
(
I−WH

k Hk

)
Fk−1xk−1

+D
H

k−1nk−1. (15)

Secondly, since W
H

k Ak = D
H

k−1Ak−1 + WH
k Ak where

Ak = HkBk,1 = HkFk−1Bk−1,1, then if Wk is a distor-
tionless filter, it verifies (7):

W
H

k Ak = Bk,1 ⇔

D
H

k−1Ak−1 =
(
I−WH

k Hk

)
Fk−1Bk−1,1,

leading to:

q̂k−1 =
(
I−WH

k Hk

)
Fk−1 (Bk−1,1x1 − xk−1)

+D
H

k−1nk−1. (16)

Thirdly:

xk−1 = Bk−1,1x1 +Gk−1wk−2 ⇔
Bk−1,1x1 − xk−1 = −Gk−1wk−2.

Finally, for any distortionless state-former Wk:

q̂k−1 = D
H

k−1nk−1 −
(
I−WH

k Hk

)
Fk−1Gk−1wk−2,

(17a)
leading to the following equivalent form of (14a):

D
b

k−1 = arg min
Dk−1

{
E
[
q̂k−1q̂

H
k−1
]}

s.t. D
H

k−1Ak−1 =
(
I−WH

k Hk

)
Fk−1Bk−1,1. (17b)

In the form of (17b), D
b

k−1 is analogous to a linearly con-
strained Wiener filter [10, §2.5].
If H1 has full rank, since A1 = H1 in (6b), then Ak, k ≥ 1,
has full rank as well. Therefore, if Cnk−1

is invertible, then
D

b

k−1 can be computed as [10, (2.113)]:

D
b

k−1 = W
b

k−1
((
I−WH

k Hk

)
Fk−1

)H
, (18a)

W
b

k−1 = arg min
Wk−1

{
E
[
r̂k−1r̂

H
k−1
]}

s.t. W
H

k−1Ak−1 = Bk−1,1, (18b)

where W
b

k−1 is the LMVDR filter at time k − 1, since, from
(9-10), (18b) is equivalent to:

W
b

k−1 = arg min
Wk−1

{
Pk−1|k−1

(
Wk−1

)}
s.t. W

H

k−1Ak−1 = Bk−1,1.

Finally, ∀k ≥ 2:

Qk−1

(
D

b

k−1,Wk

)
=
(
I−WH

k Hk

)
Fk−1×

Pk−1|k−1

(
W

b

k−1

)
FH

k−1
(
I−HH

k Wk

)
. (19)

• Solution of (14b)
According to (19), the solution D

b

k−1 , D
b

k−1 (Wk) (18a) of
the first constrained minimization problem (14a) leads to:

Pk|k

(
D

b

k−1,Wk

)
=
(
I−WH

k Hk

)
Pb

k|k−1
(
I−HH

k Wk

)
+WH

k Cvk
Wk, (20a)

Pb
k|k−1 = Fk−1P

b
k−1|k−1F

H
k−1 +Cwk−1

(20b)

Thus, the solution Wb
k of the minimization of (20a), that is:

Wb
k = argmin

Wk

{
Pk|k

(
D

b

k−1 (Wk) ,Wk

)}
, (21a)
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can be computed according to the following recursion for k ≥
2 [1][2][3]:

Pb
k|k−1 = Fk−1P

b
k−1|k−1F

H
k−1 +Cwk−1

(21b)

Sb
k|k−1 = HkP

b
k|k−1H

H
k +Cvk

(21c)

Wb
k =

(
Sb
k|k−1

)−1
HkP

b
k|k−1, (21d)

Pb
k|k =

(
I−WbH

k Hk

)
Pb

k|k−1 (21e)

• Summary
For k ≥ 2, according to (18a) and (21a), the LMVDR filter
(9) yields the state-former:

x̂b
k|k = W

bH

k yk = D
bH

k−1yk−1 +WbH
k yk

=
(
I−WbH

k Hk

)
Fk−1

(
W

bH

k−1yk−1

)
+WbH

k yk

x̂b
k|k = Fk−1x̂

b
k−1|k−1 +WbH

k

(
yk −HkFk−1x̂

b
k−1|k−1

)
where Wb

k is given by the recursion (21b-21e), similar to the
KF recursion [1][2][3]. At time k = 1:

Wb
1 = argmin

W1

{
P1|1 (W1)

}
s.t. WH

1 H1 = I,

leading to (4):

x̂b
1|1 = Pb

1|1H
H
1 C−1v1

y1, Pb
1|1 =

(
HH

1 C−1v1
H1

)−1
. (22)

Since Pb
k|k , Pk|k

(
W

b

k

)
depends on neither E [x0] nor Cx0

,
the LMVDR filter is sub-optimal in MSE sense in comparison
with the KF whatever the initial conditions E [x0] and Cx0

.
Thus, the LMVDR filter is an upper bound on the performance
of the KF whatever the initial conditions E [x0] and Cx0 .

III. ON THE SIGNIFICANCE OF LMVDR ESTIMATORS

A. A filter independent of a priori knowledge on x0

Fig. 1. Comparison of
√

P d
k|k and

√
Pk|k .

For the sake of illustration of the key properties of the
LMVDR filter, in the general case where Fk, ∀k, is not
invertible, we consider the problem of bias estimation from
noisy measurements based on the following simple time vari-
ant LDSS model:∣∣∣∣ x2k+1 = F2kx2k +w2k

y2k+1 = x2k+1 + v2k+1
,

∣∣∣∣ x2k+2 = F2k+1x2k+1 + w2k+1

y2k+2 = x2k+2 + v2k+2

where F2k =
[
1
1

]
and F2k+1 = [0.5 0.5] are not invertible.

The noise process, the measurement noise and the initial
state x0 are Gaussian and uncorrelated. Moreover, assume
that E [x0] = −2, Cx0 = 1, Cw2k

= σ2
wI, Cw2k+1

= σ2
w,

σ2
w = 4/3, Cv2k+1

= σ2
vI, Cv2k

= σ2
v , σ2

v = 100. Fig.
1. highlights the consequence of a misspecification on Cx0

and on {Cx0
, E [x0]} when one initializes the KF with wrong

assumed values Cx0 = 10−2 and
{
Cx0 = 10−2, E [x0] = 0

}
.

The empirical
√
P b
k|k (’... (Simu)’) are assessed with 104

Monte-Carlo trials.
Fig. 1. clearly shows that, although the LMVDR filter is sub-
optimal in terms of MSE when {Cx0 , E [x0]} are perfectly
known, in the presence of uncertainties on {Cx0 , E [x0]},
the LMVDR filter may offer better performance than a KF
wrongly initialized.

B. A generalization of the information filter form of the KF

If Cwk−1
and Cvk

are invertible, k ≥ 1, thus Pb
k|k and

Pb
k|k−1 are invertible, which allows to define the information

matrices:

Ik|k =
(
Pb

k|k

)−1
, Ik|k−1 =

(
Pb

k|k−1

)−1
. (23)

Then the usual form of the KF recursion (21b-21e) can be
rewritten in the following information filter (IF) form [2, §6.2]:

Ik|k−1 = C−1wk−1
− (24a)

C−1wk−1
Fk−1

(
Ik−1|k−1 + FH

k−1C
−1
wk−1

Fk−1

)−1
FH

k−1C
−1
wk−1

,

Ik|k = Ik|k−1 +HH
k C−1vk

Hk, (24b)

Kb
k = I−1k|kH

H
k C−1vk

. (24c)

If a very broad prior distribution on x0 is assumed, i.e. in the
limit case as Cx0

→∞, then I0|0 = C−1x0
→ 0, leading to:

I1|0 = C−1w0

(
I− F0

(
FH

0 C−1w0
F0

)−1
FH

0 C−1w0

)
.

Moreover, if F0 is invertible then I1|0 = 0 and:

I1|1 = HH
1 C−1v1

H1, Kb
1 =

(
HH

1 C−1v1
H1

)−1
HH

1 C−1v1
.

Thus, if F0 is invertible, the use of a prior-free estimate of x1,
obtained via the IF form (24a-24c) coincides with the LMVDR
filter. In comparison with the IF form, the LMVDR filter exists
under more general assumptions since:
a) the invertibility of Cwk−1

and Cvk
is not required,

b) and the knowledge of F0 and Cw0
is not required either.
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C. LMVDR fixed-point and fixed-lag smoothers

The standard fixed-point smoother x̂b
l|k is obtained by

running the KF on the following LDSS models [2, §9.2]:

k ≤ l

{
xk = Fk−1xk−1 +wk−1

yk = Hkxk + vk

k = l + 1


(
xl+1

κl+1

)
=

[
Fl

I

]
xl +

(
wl

0

)
yl =

[
Hl 0

](xl

κl

)
+ vl

k ≥ l + 2


(
xk

κk

)
=

[
Fk−1 0

0 I

](
xk−1

κk−1

)
+

(
wk−1

0

)
yk =

[
Hk 0

](xk

κk

)
+ vk

leading to x̂b
l|k = κ̂b

k|k for k ≥ l+ 1. Obviously at time l+ 1

the state matrix of the augmented state, i.e.
[
Fl

I

]
, is always

non invertible, whatever Fl is invertible or not. Likewise, the
standard fixed-lag smoother x̂b

k−N |k [2, §9.3] is obtained by
running the KF on an augmented system which state matrix is
always non invertible [2, (9.41)]. As a consequence, a major
benefit of the relaxation on the conditions of existence of
LMVDR filter introduced here, is the proof of the existence of
the LMVDR fixed-point and fixed-lag smoothers, which can
not be proved with the result introduced in [4].

D. Recursive form of the generalized conditional maximum
likelihood estimators (GCMLEs)

The interest of LMVDR estimators can go beyond the
property of being robust to uncertainties on {Cx0

, E [x0]}.
For instance, as shown in [12], the LMVDR fixed-point
smoother x̂b

1|k can be used to compute the GCMLEs of the
unknown deterministic parameters x1 and θ associated with
the observation model:

xl = Fl−1xl−1 +wl−1, 2 ≤ l ≤ k, (26a)
yl = Hl (θ)xl + vl, 1 ≤ l ≤ k, (26b)

where the Gaussian fluctuation noise sequence {wl}k−1l=1 is
white and uncorrelated with the Gaussian white measurement
noise sequence {vl}kl=1. The above generalized conditional
signal model (GCSM) arises when k independent conditional
signal models (CSMs) [11] involving x1 are available (26b)
and where the signals x1 are allowed to perform a Gaussian
random walk between observations (26a). In the GCSM, since
(5-6b) lead to yk ∼ CN

(
Ak (θ)x1,Cnk

(θ)
)
, the parameters

θ are connected with both the expectation value and the
covariance matrix, which is a significant change in comparison
with the usual CSM where the parameters θ are connected
with expectation value only. Therefore, the computation of
the GCMLE θ̂ (k) of θ based on yk requires the computation
of C−1nk

(θ) and
∣∣Cnk(θ)

∣∣, where Cnk(θ) is not block diagonal
(except if Cwl

= 0, 1 ≤ l ≤ k − 1), which could become
computationally prohibitive as the number of observations k
increases. Fortunately, it can be shown [12] that the GCMLE

x̂1 (k) of x1 coincides with the LMVDR smoother x̂b
1|k of x1,

which allows to compute both x̂1 (k) and θ̂ (k) recursively
from observation to observation, without the need to compute
at each new observation C−1nk

(θ) nor
∣∣Cnk(θ)

∣∣. Note that
this result can not be obtained from the standard fixed-point
smoother [2, §9.2] based on the LLMS filter, aka the KF.

IV. CONCLUSION

By relaxing the conditions of existence of LMVDR fil-
ters, the existence of the LMVDR fixed-point and fixed-lag
smoothers has been proved (and possibly of other smoothers or
predictors, which is left for future research). This result is quite
interesting for filter/smoother/predictor performance analysis
and design since it allows to synthesize IIR distortionless
estimators which performance are robust to an unknown initial
state x0. In a broader perspective, let us recall that the robus-
tification of the KF to the presence of mismodeling has been
reinvestigated lately by using unbiased finite impulse response
(UFIR) [13], p-shift FIR [14] or minimum variance UFIR
[15] filters. These algorithms have the same predictor/corrector
format as the KF, often ignore initial estimations errors and
the statistics of the noise, and become virtually optimal as the
length of the FIR window increases. All in all, the LMVDR
filter is not the best filter in terms of MSE, neither the more
robust, but its performance can be assessed in advance and
it can be pre-computed. On another note, LMVDR estimators
may also allow to derive unexpected results, as highlighted
with the LMVDR fixed-point smoother (see §III.D) [12].
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