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Abstract—This paper presents a texture analysis method that
combines Bouligand-Minkowski fractal dimension and local bi-
nary patterns (LBP) method. The LBP approach is used to
obtain “pattern images” from an original input image in order
to provide new information sources to be exploited by the
Bouligand-Minkowski fractal dimension. Two hybrid approaches
were proposed and their results are: “FD(Original image + LBP
maps)” (97.12% and 63.80%) and “FD(Original image + LBP
maps + STD)” (98.20% and 70.80%) for Brodatz and UIUC
image databases, respectively. These results demonstrate that the
proposed hybrid method provides a high discriminative feature
vector for texture classification.

I. INTRODUCTION

Since the birth of computer vision field, texture analysis has
been one of its most important subjects. Texture has a great
variety of definitions, once it is not possible to comprehend
all the texture aspects with a single concept. For instance,
[1] interpret a texture as sub-patterns repeated in its precise
form or with small variations along the image. Obviously,
such concept is very restrict and fits better into the artificial
texture category (for instance, the image of a wall built with
rectangular bricks). On the other hand, there exist a vast
range of natural textures (images of smoke, bark, leaf surface
etc.) that cannot be explained in this way. [2], for instance,
defines them as persistent stochastic patterns with a cloud-like
appearance.

Throughout the years many methods have been proposed to
extract signatures from textures and it is common the literature
classify them into four categories: statistical, which includes
the classical co-occurrence matrices; frequency-domain (for
instance, methods based on Fourier transform and wavelets);
geometrical, which interprets the texture as composed of prim-
itives; and model-based, which is based on fractal and stochas-
tic models [3]. However, it seems that such categorization must
be expanded in order to comprehend the methods proposed in
recent years. For instance, we can cite approaches based on:
tourist walk [4]; micro-structures [5]; complex networks [6],
gravitational models [7] and so on.

In order to provide a high discriminative texture analysis
method to the texture analysis field, this work proposes a
hybrid approach based on local binary patterns (LBP) and
fractal dimension, where LBP method is used to obtain “pat-
tern images” from an original input image and the Bouligand-

Minkowski fractal dimension is used to extract signatures from
these pattern images. To explain our proposed approach, this
paper is organized as follows: Sections II and III describe the
LBP method and the Bouligand-Minkowski fractal dimension,
respectively. Section IV shows how to combine LBP and
fractal dimension in order to obtain a signature. Section V
describes the texture benchmarks used in the experiments, the
classification procedure, as well as the other methods used
for comparison. Section VI presents the obtained results and
a discussion on them, and, finally, Section VII shows some
remarks about this paper.

II. LOCAL BINARY PATTERNS - LBP

First introduced by [8], local binary patterns are a highly
discriminative source of texture information and have been
extended to many and different approaches [9], [10]. The
method examines the neighborhood of a pixel to compute the
pattern code that must be associated to that pixel. Given a
central pixel with gray value gc in the image, we obtain its
LBP pattern code as

LBPP,R =
P−1∑
p=0

s(gp − gc)2p (1)

with

s(x) =

{
1 x ≥ 0
0 x < 0

(2)

where gp, p = 1, . . . , P , is the gray value of its P neighbors
and R is the radius of the neighborhood. As one can see, each
neighboring pixel is compared to the central pixel in clockwise
direction. We assign value 1 to this neighboring pixel if its
intensity is greater than the central pixel; Otherwise, we assign
value 0. This results in a binary sequence which is converted
into a decimal value representing the LBP code of the pixel.
Figure 1 shows an example of the LBP code obtained for a
pixel using the traditional 3×3 rectangular neighborhood. This
process is replicated to each pixel, so that the method is able
to construct a histogram of code patterns that represents the
texture under analysis.
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Fig. 1. Example of the LBP code obtained for a pixel using the traditional 3× 3 rectangular neighborhood.

III. FRACTAL ANALYSIS

The literature presents different approaches to compute
fractal descriptors (FD) from a texture image, as seen in
[11], [1], [12]. A commonly used approach is the Bouligand-
Minkowski, which is one of the most accurate methods to
estimate the fractal dimension of a object [13], [11], [14].
Fractal dimension, as first introduced by Benoit Mandelbrot in
1970s, is a measure of the self-similarity of the object through
the scales. This measure is also related to complexity and space
occupation of the object [15], [16], [14].

For texture images, Bouligand-Minkowski method com-
putes fractal descriptors by studying the influence volume of
the pattern present in the image, which is very sensitive to
structural changes in the pattern. First, the method maps a
gray-level image I to a three-dimensional cloud of points
C. Each point in the cloud is determined by a set of three
coordinates (x, y, z) where

C = {(x, y, z)|I(x, y) = z} . (3)

Next, each point c in the cloud point C, c ∈ C, is dilated
by a sphere of radius r. This process occurs simultaneously
for each point, thus resulting in the influence volume V (r) of
the texture pattern, where this volume is defined as

V (r) =
{
c′ ∈ R3|∃c ∈ C : |c− c′| ≤ r

}
, (4)

i.e., the influence volume is the sum of the points in the space
whose distance from the cloud is not larger than r. As the
radius r increases, spheres produced by different points start
to interfere with each other, modifying the resulting influence
volume. This interference depends on the value of the radius
used, as well as the texture pattern under analysis. By us-
ing different radius values, we can obtain fractal descriptors
directly from the influence volume V (r) [14], [11] or by
computing the images’ fractal dimension D as

D = 3− lim
r→0

log V (r)

log (r)
. (5)

IV. COMBINING LBP MASK WITH FRACTAL ANALYSIS

Traditionally, LBP method is applied over each pixel of a
texture image, thus resulting in a map of LBP codes for that
pattern. From this map, the method extracts a histogram of
code patterns, which is used for texture classification purposes.

However, histograms do not hold any spacial information
about the image pixels, only the frequency that each pattern
occurs. Moreover, the conversion from binary sequence to
decimal code depends on the initial point used to travel the
neighboring pixels in clockwise direction. The fact is that each
pixel neighboring the central pixel can be used as initial point,
thus resulting in 8 different LBP masks used to create the LBP
map, as shown in Figure 2.

Figure 3 shows that by computing the 8 possible LBP maps
from a texture pattern one can see that they hold not only
spatial information, but that they are significantly different
from each other. These differences are due to the emphasis
that each LBP mask gives to the pattern present in the image
in terms of orientation. Such information is not considered
when a histogram is used to represent the LPB map.

To take advantage of the spatial information present in
the LBP map, we propose to extract fractal descriptors (FD)
from each map. Fractal analysis, as described in Section III,
enables us to measure how regular/irregular an image pattern
is, i.e., how homogeneous (or heterogeneous) the distribution
of pixel is. To accomplish that, we propose to estimate the
fractal dimension as the descriptors of the image. On one
hand, we must emphasize that fractal dimension is a property
of fractal objects and it is related to the concept of self-
similarity at infinite scales. On the other hand, images have
limited resolution and finite size, like any real object. As a
consequence, the fractal dimension of an image is a multi-
scaled measure, i.e., it depends on the dilation radius r used.
Thus, we propose to compute this descriptor for different
radius values, thus resulting in the following feature vector

~ψ(rmin, rmax) = [D(rmin), . . . , D(rmax)] , (6)

where D(r) is the Bouligand-Minkowski fractal dimension es-
timated using dilation radius r = {rmin, rmin + 1, . . . , rmax}.
This feature vector can be used to describe any image pattern,
i.e., both original texture image or LBP maps. This enables
us to combine, through concatenation, the descriptors obtained
from different patterns into a single feature vector ~ϕ as follows

~ϕp1,...,pN
(rmin, rmax) =

 ~ψp1
(rmin, rmax),

. . . ,
~ψpN

(rmin, rmax)

T

, (7)
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Fig. 2. 8 LBP masks used to create pattern images.

Fig. 3. Example of LBP maps obtained from an original input image.

where p1, p2 . . . , pN are N different image patterns used to
compute the feature vector.

V. EXPERIMENTS

For the evaluation of our proposed approach, we used two
grayscale image databases to perform the experiments. They
are:
• Brodatz [17]: we used a dataset composed of 40 classes

from the original Brodatz album, each class containing 10
images. Each image is 200×200 pixels size with intensity
resolution of 256 graylevels.

• UIUC [18]: the original database is composed of 25
classes with 40 images 640 × 480 pixels size per class.
These images are more difficult to classify because they
were obtained from different viewpoints, with non-rigid

transformations and different perspectives. In order to
maintain coherence with the Brodatz experiment, we
cropped a window 200×200 from the upper-left side of
each image, thus creating a database of 1.000 images
of 200×200 pixels size with intensity resolution of 256
graylevels.

For classification, we used Linear Discriminant Analysis
(LDA) [19], a statistical method that considers that all the
classes have the same covariance matrix (obtained from
the whole database). To validate the experiments, we used
the leave-one-out cross-validation scheme, which splits the
database into one sample for testing and the remainder for
training. This process is repeated N times, where N is the
number of samples, each time with a different sample for
testing. The performance measure is the mean accuracy of
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Fig. 4. Success rate in Brodatz dataset for different number of fractal
descriptors and combinations of patterns.

the N classifications.
To improve the evaluation of our method, we compared it

with other texture analysis methods found in the literature.
They are: Gabor filters [20], Wavelet descriptors [21], Co-
occurrence matrices [22], Tourist walk [4].

VI. RESULTS AND DISCUSSION

For this approach, we considered two feature
vectors to characterize a texture sample: ~ψ(rmin, rmax)
and ~ϕp1,...,pN

(rmin, rmax). The first feature vector,
~ψ(rmin, rmax), depends on the choice of parameters
for its computation: the initial and final radius value, rmin

and rmax, respectively. These two values define the range
of dilation radii used to compute the fractal dimension. For
the initial radius we used rmin = 3 as the influence volume
obtained for smaller dilation radii is not able to capture
significant information about the texture pattern. In this way,
we only evaluated the variations in the final radius value,
rmax, as shown in Figure 4.

To use the second feature vector, ~ϕp1,...,pN
(rmin, rmax), it

is necessary to define the set of image patterns p1, . . . , pN
from which the fractal descriptors (FD) will be extracted.
Figure 4 shows the results achieved for four different sets of
patterns in the Brodatz dataset:
• FD(Original image): N = 1 pattern
• FD(LBP maps): N = 8 patterns
• FD(Original image + LBP maps): N = 9 patterns
• FD(Original image + LBP maps + LBP’s standard devi-

ation (STD)): N = 10 patterns
These sets of patterns were carefully chosen to show that

the fractal descriptors are very meaningful to describe a
texture sample, i.e., the original image. However, the use
of LBP maps as input patterns highly increases the success
rate and diminishes the importance of larger radii during the
analysis. By combining different sources of patterns into the

feature vector we remove the necessity of using more fractal
descriptors to discriminate each pattern.

As the LBP maps constitute different sources of patterns
from the original image, one must understand them as a
complementary information. Therefore, it would be interesting
to evaluate their combination into a single feature vector.
Moreover, since LBP maps are obtained using different orien-
tations, the standard deviation present along the maps may also
be an important source of information for the texture pattern.
We notice that combining fractal descriptors from both original
image and LBP maps increases even more the success rate of
the method. Descriptors from LBP’s standard deviation do not
seem to play an important role in this classification. However,
this is due to the success rate has already achieved a high
value, leaving small space for improvement.

TABLE I
COMPARISON RESULTS FOR DIFFERENT TEXTURE METHODS.

Success rate (%)
Method Brodatz UIUC
Gabor filters 97.00 56.50
Wavelet descriptors 87.50 41.00
Co-occurrence matrices 93.75 41.10
Tourist walk 95.50 48.10
FD(Original image) 93.75 48.70
FD(Original image + LBP maps) 97.12 63.80
FD(Original image + LBP maps + STD) 98.20 70.80

Table I shows the results of the proposed approach and the
compared methods. For this comparison, we used rmin = 3
and rmax = 10. As a result, the approach “FD(Original
image + LBP maps)” has 72 descriptors while “FD(Original
image + LBP maps + STD)” has 80 descriptors. “FD(Original
image)” refers to the set of fractal descriptors computed
exclusively from the original image, i.e., without combining
with any other source of pattern. The first conclusion that
can be deduced from these results is that the LBP masks
really improve the “FD(Original image)” performance, since
the “FD(Original image + LBP maps)” surpassed it in 3.37%
and 15.10% for Brodatz and UIUC databases, respectively.
When we consider the “FD(Original image + LBP maps +
STD)”, the improvement becomes even clearer because this
method surpasses “FD(Original image)” in 4.45% and 22.10%
for these two image databases.

Also, both “FD(Original image + LBP maps)” and
“FD(Original image + LBP maps + STD)” obtained results
higher than the accuracy of the other compared methods.
Among these methods, we can stress the results of: Gabor
filters (0.12% and 7.30% less images correctly classified for
Brodatz and UIUC datasets, respectively, when compared to
“FD(Original image + LBP maps)”); and Tourist walk (1.62%
and 15.70% less images correctly classified for Brodatz and
UIUC datasets, respectively, when compared to “FD(Original
image + LBP maps)”). These differences become more rele-
vant when we take into account the “FD(Original image + LBP
maps + STD)” method and the other compared approaches.
Thus, the presented results demonstrate that the combination
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of fractal dimension and LBP approach provides a high
discriminative feature vector for texture analysis.

VII. CONCLUSION

This work presented a high discriminative texture analy-
sis method that combines the Bouligand-Minkowski fractal
dimension and LBP maps. The results demonstrated that
this proposed innovative approach surpassed classical and
recent texture analysis methods in two well-known benchmark
datasets, thus proving to be an effective tool for image
analysis. Moreover, such hybrid strategy opens a promising
line of research to be explored in computer vision field.
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