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ABSTRACT

Deep neural networks (DNNs) have been used for dereverber-
ation and denosing in the monaural source separation prob-
lem. However, the performance of current state-of-the-art
methods is limited, particularly when applied in highly rever-
berant room environments. In this paper, we propose an en-
hanced time-frequency (T-F) mask to improve the separation
performance. The ideal enhanced mask (IEM) consists of the
dereverberation mask (DM) and the ideal ratio mask (IRM).
The DM is specifically applied to eliminate the reverbera-
tions in the speech mixture and the IRM helps in denoising.
The IEEE and the TIMIT corpora with real room impulse re-
sponses (RIRs) and noise from the NOISEX dataset are used
to generate speech mixtures for evaluations. The proposed
method outperforms the state-of-the-art methods specifically
in highly reverberant and noisy room environments.

Index Terms— source separation, reverberant room en-
vironments, dereverberation, time-frequency mask

1. INTRODUCTION

Speech separation aims to extract the target speech signal
from the mixture which contains the background interferences
[1,2]. In real room environments, the target speech signal
and background interferences have reflections which affect
the perceptual quality and intelligibility of the target speech
signal. Meanwhile, in many applications such as automatic
speech recognition (ASR), assisted living systems and hear-
ing aids, if the undesired signals and their reflections are re-
moved from the mixture, the capabilities in these applications
will be further improved [3-5].

Many approaches have been developed to solve the source
separation problem in monaural and binaural cases [6-8]. In
recent studies, the masking-based DNN method is applied to
predict a T-F mask to separate the target speech from the mix-
ture containing noise and reverberations [4,8,9]. When the T-
F mask is applied to the mixture, the speech-dominant parts
are preserved and the noise-dominant parts are suppressed,
hence, the target speech is separated. Generally, the training
targets of the masking-based DNNSs are classified as ideal bi-
nary mask (IBM), IRM and complex IRM (cIRM).
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In IBM, each T-F unit is assigned as 1 or 0 according
to the criterion for the active source [10]. In IRM, each T-
F unit is a ratio between the energies of the target speech
signal and the mixture [11]. However, the limitation of the
IRM is that the phase information of the clean speech signal
is not used in speech reconstruction. To overcome this draw-
back, the cIRM is proposed, where the phase information of
the speech mixture is considered [12]. The cIRM is a com-
plex T-F mask which is obtained by using the real and imagi-
nary components of the short-time Fourier transform (STFT).
According to [11], by using the IRM to separate the speech
mixture, the separation performance is always better than us-
ing the IBM. Hence, the IRM and the cIRM are used for the
performance comparison with our proposed method. How-
ever, in real-world environments, the separation performance
of the above mentioned methods is limited, not always yield-
ing robust performance in various environments and noise is
still challenging.

In this paper, we propose a new dereverberation and sepa-
ration method. Firstly, a DNN is trained to generate the DM,
which is applied to eliminate the reflections. Then, the DM
is integrated with the IRM for final separation of the speech
mixture. The paper is organized as follows. Section 2 de-
scribes the IEM and the framework of the proposed method.
The experimental results and analysis are shown in Section 3.
The conclusions and future work are given in Section 4.

2. PROPOSED METHOD

Assume that s(m), n(m) and y(m) are the target speech sig-
nal, the noise and the acquired mixture at discrete time m,
respectively. The hs(m) and h,,(m) are the RIRs for rever-
berant speech and noise, respectively. The convolutive mix-
ture is expressed as:

y(m) = s(m) * hs(m) + n(m) * hn(m) M

where ‘x’ indicates the convolution operator.
By using the STFT, the mixture is written as:

Y(t, ) =St NHs(, f) + N ) Hu(t f) ()

where S(t, f), N(t, f) and Y (¢, f) are the spectra of speech,
noise and mixture, respectively. The H, (¢, f) and H, (¢, f)
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are the RIRs for speech and noise at time frame ¢ and fre-
quency f.

The target of the dereverberation is to remove the reflec-
tions in the reverberant mixture and obtain only anechoic mix-
ture. Because the DNN can be utilized to model the relation-
ship between the input of the DNN and the training target, we
proposed the DNN-based method to achieve the dereverbera-
tion.

According to (2), we rewrite the reverberant mixture as:

H,(t, Hy,(t,
Y(t, f)= (St f)+N(t, f)) (15@]2) (St(tj-,[f))
S, f) 1+ N(t,f) A
(

Therefore, by using the Y (¢, f) and (S(t, f) + N(t, f)), the
relationship between the reverberant and anechoic mixtures is
obtained.

Hence, in our proposed method, we defined the derever-
beration mask (DM) as:

HALf) | Hitf) |

N (D) ST)
I+sep Yt ~ep

DM(tvf):

In the training stage, the spectra of speech S(t, f), noise
N(t, ) and reverberant mixture Y (¢, f) are available, there-
fore, the DM can be learned as:

DM(tvf) = (S(ta f)+N(t7f))Y(t7f)il (5

By using (3) to (5), we can obtain the anechoic mixture
which is separated with the ideal ratio mask (IRM). As in
[11], we define the IRM:

S(t, f)2 P
IS(¢, 1)l t,f)|2) ©)

TRM(:, f) = <|s<t,f>|2+|N<

where (3 is a tunable parameter to scale the mask, |S(¢, f)| and
|N(t, f)| denote the speech and noise magnitude spectrum,
respectively.

Therefore, the ideal enhanced mask (IEM) can be gener-
ated by integrating the DM and the IRM as:

[EM(t, f) = DM(t, f)IRM(t, ) ™)

According to (4) and (5), we see that the DM is a derever-
beration operation. Thus, we have

S(t,f)+ N(t, f) = Y(t, f)DM(t, f) ®

The dereverberation and separation are jointly achieved with
the IEM and the separated speech signal is expressed as:

S(t, f) =Y (t, HIIEM(L, f) )

Hence, the DM is used to achieve the dereverberation and
the IRM is employed to separate the target speech. The values

1662

in the DM have a large range, therefore, the compression and
recovery processes are essential. In the training stage, the
compressed IEM, M_(t, f) is written as:

1 — —C-IEM(,f)
1+ e—CIBM(,])

M(t.f)=V (10)
where C'is the steepness constraint and the value of M, (¢, f)
is limited in the range [V, V]. In the proposed method, the
training objective of the DNN is the compressed IEM, which
is calculated based on feature combinations [11]. After the
validation tests, the values of C and V' are chosen as 1 and
10, respectively.

In the testing stage, the output of the trained DNN is re-
covered and the final predicted T-F mask is expressed as:

1

M(t, f) = —alog(v — 0l /)

V—i—O(t,f)) an

where the M (¢, f) is the predicted IEM, and O(L, f) is the
output of the trained DNN.

Therefore, the predicted target signal S is obtained by us-
ing the final predicted mask:

S(t, f) =Y (t, f)M(t, f) (12)

Calculation

|
|
Targets IEM |
|
|
|

iy
| | Separated | Separation
| Speech Module
Fig. 1: The block diagram of the proposed method. The trained

DNN is given by the training stage and the output of the testing stage
is the separated speech signal.

Feature Training Compression
L Extraction DNN Module
I_Testing Stage |
| [ Mixture Feature Trained Recovery |
| Extraction DNN Module

Figure 1 is the flow diagram of our proposed method,
where (10) and (11) are achieved in the compression mod-
ule and the recovery module, respectively. The target speech
signal is separated from the convolutive mixture with the pre-
dicted IEM in the separation module.

3. EVALUATIONS AND RESULTS

The speech sources are selected from the IEEE [13] and the
TIMIT corpora [14]. The noise signals are selected from the
NOISEX database [15] and the real RIRs [16] are used. The
speech utterances are mixed with four types of noise and room
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Table 1: Separation performance comparison in terms of SNR,, (dB) with different training targets, SNR levels and RT60s. The noise in
the experiments is factory noise. Each result is the average value of 120 experiments. BOLD indicates the best result.

RT60s Room A (0.32 s) Room B (0.47 s) Room C (0.68 s) Room D (0.89 s)

SNR Levels (dB) | -3 0 3 -3 0 3 -3 0 3 -3 0 3
Mixture 1.82 | 236 | 302 | 136|179 | 233|141 |192|201 091 | 122 | 1.59
IRM [11] 378 | 438 | 495|425 | 506 | 566 | 478 | 557 | 627 | 3.58 | 4.12 | 453
cIRM [12] 412 | 472 | 512 | 453 | 525 | 579 | 481 | 577 | 635 | 398 | 448 | 501
Proposed 470 | 539 | 6.06 | 461 | 542 | 6.11 | 5.16 | 597 | 6.62 | 4.68 | 5.27 | 591

Table 2: Separation performance comparison in terms of SNR,, (dB) with different training targets, SNR levels and RT60s. The noise in
the experiments is babble noise. Each result is the average value of 120 experiments. BOLD indicates the best result.

RT60s Room A (0.32 s) Room B (0.47 s) Room C (0.68 s) Room D (0.89 s)

SNR Levels (dB) | -3 0 3 -3 0 3 -3 0 3 -3 0 3
Mixture 190 | 250 | 3.18 | 144 | 194 | 250 | 069 | 1.18 | 1.67 | 0.69 | 1.08 | 1.47
IRM [11] 428 | 467 | 508 | 497 | 534 | 596 | 538 | 599 | 6.65 | 3.80 | 4.31 | 4.75
cIRM [12] 488 | 505|543 | 497 | 543 | 640 | 4.89 | 566 | 6.75 | 428 | 4.51 | 4.79
Proposed 533 | 564 | 6.01 | 510 | 556 | 6.61 | 5.61 | 6.29 | 7.21 | 5.00 | 5.52 | 5.99

Table 3: Separation performance comparison in terms of SNRy,, (dB) with different training targets, SNR levels and RT60s. The noise in
the experiments is cafe noise. Each result is the average value of 120 experiments. BOLD indicates the best result.

RT60s Room A (0.32 s) Room B (0.47 s) Room C (0.68 s) Room D (0.89 s)

SNR Levels (dB) | -3 0 3 -3 0 3 -3 0 3 -3 0 3
Mixture 303|356 | 4.11 | 228 | 260|291 (249|299 |352 203|220 | 239
IRM [11] 413|465 | 523|459 | 535|598 |527 613|677 | 364|403 | 443
cIRM [12] 462 | 501 | 543 | 496 | 572 | 601 | 526 | 600 | 6.07 | 4.18 | 4.53 | 5.11
Proposed 514 | 595 | 643 | 5.07 | 598 | 6.14 | 553 | 6.58 | 7.34 | 4.84 | 553 | 6.05

Table 4: Separation performance comparison in terms of SNR,, (dB) with different training targets, SNR levels and RT60s. The noise in
the experiments is SSN noise. Each result is the average value of 120 experiments. BOLD indicates the best result.

RT60s Room A (0.32 s) Room B (0.47 s) Room C (0.68 s) Room D (0.89 s)

SNR Levels (dB) | -3 0 3 -3 0 3 -3 0 3 -3 0 3
Mixture 288 | 327 | 371 | 239 | 275 | 356 | 2,56 | 2.88 | 333 | 2.17 | 241 | 2.67
IRM [11] 550 | 561 | 6.04 | 500 | 530 | 546 | 659 | 7.18 | 7.60 | 4.89 | 524 | 531
cIRM [12] 552 554|617 | 521 | 553|569 569|650 | 697|507 | 544 | 5.67
Proposed 6.17 | 649 | 680 | 6.02 | 639 | 655 | 6.87 | 796 | 825 | 598 | 6.31 | 6.71

environments, which have different RT60s. In these noise Table 5: The parameters for real RIRs in different rooms [16]

signals, a speech-shaped noise (SSN) is generated as the sta- Room Size Dimension (m3)  RT60 (s)
tionary noise [17] and all others are the non-stationary noise, A Medium 5.7 x 6.6 x 2.3 0.32
namely factory, babble and cafe. In the experiments, we ran- B Small 4.7 x 4.7 x 2.7 0.47
domly select 780, 100 and 120 utterances from the IEEE and C Large 23.5 x 18.8 x 4.6 0.68
the TIMIT corpora. These clean utterances are used to mix D Medium 8.0 x 8.7 x 4.3 0.89

with noise at the different signal-to-noise ratio (SNR) lev-
els and RIRs to generate training, development and testing
datasets. Besides, for each room, five different RIRs are used
to train the DNN and in the testing data, all of the mixtures
with these five RIRs are evaluated. The azimuth between two
signal sources are selected from 0° to 60° with 15° increment.
The numbers of mixtures in training, development and testing
data for each room are 46800, 6000 and 7200, respectively.
Table 5 illustrates the parameters in the real RIRs [16].

end. We compare the proposed method with two state-of-the-
art T-F masks: the IRM [11] and the cIRM [8]. The eval-
uation measures are the frequency-weighted segmental SNR
(SNR,,) [18] and the source to distortion ratio (SDR) [19].

In our experiments, the DNN has three hidden layers and
each hidden layer has 1024 units. The activation function for
each hidden unit is selected as the rectified linear unit (ReLU)

ISBN 978-90-827970-1-5 © EURASIP 2018

The DNNs are trained by using the AdaGrad algorithm
with a momentum term for 100 epochs. The learning rate
is linearly decreased from 1 to 0.01, while the momentum is
fixed as 0.9 in the first ten epochs and changed as 0.5 till the
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to avoid the gradient vanishing problem and the output layer
has linear units [8]. The context window is employed to uti-
lize the temporal information between neighbouring frames
and the window length is three [11].
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Fig. 2: The SDR (dB) in terms of dlfferent masks with various rooms. The X-axis is the SNR level, the Y-axis is the SDR (dB), each result is
the average value of 120 experiments. The noise types in the (a), (b), (c) and (d) are factory, babble, cafe and SSN, respectively.

Tables 1 - 4 show the separation performance of the pro-
posed method and the comparison groups with different noise
in terms of the SNRy,, [18]. It is clear that the proposed
method achieves the best performance in all scenarios and
SNR levels. Although in some cases, such as the Room B
with factory noise at -3 dB SNR level, the proposed method
only improves the performance slightly when comparing with
the cIRM, in other scenarios, the gains from the proposed
method in terms of the SNR ¢, are remarkable.

Moreover, when RT60 becomes higher, our proposed ap-
proach provides more significant improvements than the IRM
and the cIRM. For example, in the Room A with babble noise,
where the RT60 is the lowest, comparing with the cIRM,
the further average SNRy,, improvements of the proposed
method is 0.54 dB. While in the Room D with babble noise,
where the RT60 is the highest, comparing with the cIRM, the
corresponding average SNR,, improvement is 1.16 dB. It
can be observed that the proposed method is more efficient
with high RT60s.

Figure 2 gives the separation performance in terms of SDR.
It can be observed from the figure that the proposed method
provides the largest SDR value consistently in all the scenar-
ios. For example, in Figure 2(a), Room A, where the noise
type is factory, the proposed method achieves 33.8 %, 37.4 %
and 25.6 % improvements over the cIRM at -3, 0 and 3 dB
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SNR levels, respectively. In highly reverberant room environ-
ment, such as in Figure 2(d), Room D, where the RT60 is 0.89
s, the proposed method achieves 84.4 %, 57.8 % and 26.6 %
improvements over the cIRM at -3, 0 and 3 dB SNR levels,
respectively.

Comparing the performance with different RT60s, except
for Room C, which has the largest direct-to-reverberant ratio
(DRR) in these rooms, when the RT60 increases, the value
of the SDR decreases. The separation performance improves
with the increase in the SNR levels (from -3 dB to 3 dB).

In summary, by using the proposed IEM as the training
target, the trained DNN model can generate a more effective
T-F mask for source separation from the convolutive mix-
ture. Compared with the IRM- and the cIRM-based DNN
approaches, our proposed method provides the best perfor-
mance in terms of SNR ¢, and SDR consistently.

4. CONCLUSIONS AND FUTURE WORK

In this work, a dereverberation mask was firstly proposed and
integrated with the IRM to generate the IEM. We demon-
strated that the proposed method with the IEM as the training
target gave better separation performance as compared with
other masking-based methods, in terms of SNRy,, and SDR
evaluations using different types of real RIRs and noise.
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In the future work, we will try to solve the unseen RIRs
problem and improve the generalization ability of the pro-
posed method by using the advanced neural network archi-
tectures such as deep recurrent neural network (DRNN) or
long short-term memory (LSTM) RNN.
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