
Defect Detection from 3D Ultrasonic Measurements
Using Matrix-free Sparse Recovery Algorithms

Sebastian Semper∗, Jan Kirchhof∗†, Christoph Wagner∗, Fabian Krieg∗†,
Florian Römer†, Ahmad Osman† and Giovanni Del Galdo∗‡

∗Technische Universität Ilmenau, Institute for Information Technology, Germany
†Fraunhofer Institute for Non-Destructive Testing IZFP, Saarbrücken, Germany

‡Fraunhofer Institute for Integrated Circuits IIS, Ilmenau, Germany

Abstract—In this paper, we propose an efficient matrix-free
algorithm to reconstruct locations and size of flaws in a specimen
from volumetric ultrasound data by means of a native 3D Sparse
Signal Recovery scheme using Orthogonal Matching Pursuit
(OMP). The efficiency of the proposed approach is achieved
in two ways. First, we formulate the dictionary matrix as a
block multilevel Toeplitz matrix to minimize redundancy and thus
memory consumption. Second, we exploit this specific structure
in the dictionary to speed up the correlation step in OMP, which
is implemented matrix-free. We compare our method to state-of-
the-art, namely 3D Synthetic Aperture Focusing Technique, and
show that it delivers a visually comparable performance, while
it gains the additional freedom to use further methods such as
Compressed Sensing.

I. INTRODUCTION & STATE OF THE ART

In ultrasonic Non-Destructive Testing (NDT), the goal is
to localize and characterize flaws inside of a specimen from
ultrasonic measurements. To achieve this, various post-processing
methods have been proposed, e.g. the Total Focusing Method
[1], [2] or the Synthetic Aperture Focusing Technique [3]. It
has been shown that Sparse Signal Recovery (SSR) based
approaches [4], [5], [6], [7] lead to improved reconstruction
results compared to the classical focusing techniques. So far,
SSR has only been applied to 2D ultrasonic B-scan data due to
its computational demands. Interestingly, the authors in [8]
illustrate how exploiting multilevel Toeplitz structures massively
lowers the computational demands for the solution of 3D
acoustic scattering problems, where a large system of linear
equations has to be solved, which is done by a matrix-free
algorithm. The notion matrix-free means to solve the linear
system of equations, no full system matrix is built up in memory,
instead only the matrix-vector multiplication is implemented
in a specific algorithm, which then is used by the solver for
the linear system. We apply ideas, which are to some degree
inspired by the approach in [8], to compress the dictionary
occurring in an SSR problem to make the computations feasible
on a modern HPC node.

This new matrix-free approach allows to solve SSR problems
as discussed in Section II at much higher resolutions than

The authors would like to thank Henning Schwanbeck for the support with
the HPC. Christoph Wagner is supported by the Carl-Zeiss Foundation under
the project “PRIME”. Sebastian Semper is funded by DFG under the project
“CoSMoS”. Florian Römer is is funded by the Fraunhofer Internal Programs
under Grant No. Attract 025-601128.

before. Therefore, one can reconstruct flaws in the complete 3D
volumetric data instead of sliced reconstructions on 2D B-scans.
This yields the advantage that one can make use of forward
models which take the continuity of the data across multiple
B-scans into account. Further, a sophisticated SSR approach is
the foundation to detect defects from low-rate measurements
using Compressed Sensing (CS) [9].

In this paper, the following notation is used. For n ∈ N , a
given ordered set S ⊂ {1, . . . , n} and a vector x ∈ Cn we set
xS ∈ C|S| to be the restriction of x to the elements indexed by
S. For given n ∈ N we denote with In the identity matrix on
Cn and 1-dimensional Fourier matrix acting on vectors in Cn
as Fn. Also, A⊗B denotes the Kronecker product. For a
matrix M ∈ Cn×n, the matrix MS consists of the columns
and rows indexed by the set S.

II. ULTRASONIC NON-DESTRUCTIVE TESTING

In ultrasonic NDT, the widespread pulse-echo method inserts
an ultrasound pulse into the specimen and measuring the echo
signal. Following [5], the discrete measurement samples of this
process can be modeled as delayed echoes of the inserted pulse
given by

bx,y(mts) =
I∑
i=1

ai · g(τx,y(xi, yi, zi))

· h(mts − τx,y(xi, yi, zi)) + n(mts),

(1)

where ts is the sampling period, h : R→ R is the inserted pulse,
ai the reflectivity coefficient of the i-th reflector, g : R→ R
a window function to account for attenuation and n(·) the
measurement noise. To take several pulse-echo measurements
from different positions of the specimen surface, we define a
2-dimensional equispaced grid on the surface defined by

G2D = {(x, y)|x = nx ·∆x, nx ∈ {0, . . . , Nx − 1} ,
y = ny ·∆y, ny ∈ {0, . . . , Ny − 1}},

where ∆x = ∆y is the grid spacing and (x, y) ∈ G2D in
Eq. (1). The observed echoes of a particular reflector produce
a predefined trace τk(xi, yi, zi) in these measurements that
depends on the distance change between transducer and reflector
based on the specimen geometry. By assuming a flat surface,
we get for the trace

τx,y(xi, yi, zi) =
1

c

√
(x− xi)2 + (y − yi)2 + z2

i ,

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1714

where c is the speed of sound within the medium. The M ·Nx·Ny
samples are then collected in
bm,x,y = [bx,y(m·ts)]m∈{0,...,M−1},(x,y)∈G2D

∈ RM×Nx×Ny .

The reflections arise from possible defects inside the specimen,
which we want to locate. To recover the positions of the I
reflectors, we need to fit the parameter triplets (zi, xi, yi) to the
observed data. To this, we discretize z and define the 3D grid
G3D = {(z, x, y)|(x, y) ∈ G2D, z = nz·∆z, nz = 0, . . . ,M−1}
with ∆z = ts · c, which aligns the reconstruction grid with
the sampling grid of the measurement, and a total number
of N = NxNyM voxels. This gridding process introduces a
model error, which is negligible as long as we chose G3D fine
enough. Then vec b can be written as a linear combination
of atoms Hzn,xn,yn ∈ RN , (zn, xn, yn) ∈ G3D, where the
elements of Hzn,xn,yn are given by g(τx,y(xn, yn, zn)) ·
h(mts−τx,y(xn, yn, zn)). In other words, the vector Hzn,xn,yn

contains the volumetric data set of a single reflector at position
(zn, xn, yn). This is expressed concisely via

vec b = Ha+ n. (2)
Here, H ∈ RN×N is the so-called dictionary matrix containing
all vectors Hzn,xn,yn as its columns, a ∈ RN contains the ai
from Eq. (1), where the corresponding index i for a reflector at
position (z, x, y) is determined by i = z ·NxNy + y ·Nx + x.
Finally n ∈ RN is a vector containing the noise as well as
the model error, e.g., from the gridding. Since the number of
defects can be assumed small compared to the total number of
possible reflector positions, finding a in Eq. (2) can be achieved
by solving a SSR problem [5], which in our case reads as

min ‖a‖0 s.t. vec b = H · a (3)
For realistic problem sizes in ultrasonic NDT, computing the full
matrix H becomes infeasible with current computer technology.
For instance, for the measurement we consider in this paper, b is
of size 181 · 381 · 182 = 12550902. The resulting H contains
approximately 1.57 ·1014 elements that would require 1.3 PB of
storage. One approach is to store H in a sparse data structure. In
the worst case, it contains approximately N2

xN
2
yMNp nonzeros,

with Np being the number of points needed to sample h(t).
So although Np �M , a sparse representation of H does not
allow to completely store H in memory.

To overcome these current computational limits, the structure
in H must be exploited, effectively removing redundancy.
SSR algorithms such as Fast Iterative Shrinkage Thresholding
(FISTA) [10] or Orthogonal Matching Pursuit (OMP) [11] utilize
only the forward and backward projections, HHx and Hx for
some given x ∈ RN , since following [12, A.3] the solution to
the least squares problem (needed in OMP) can be updated
iteratively from the solution in the previous step. Therefore, we
will follow this approach throughout the remainder of this
paper. Section III introduces efficient projection algorithms for
matrices having a block multilevel Toeplitz structure [8], [13].
In Lemma IV.1 we derive that H indeed is block multilevel
Toeplitz and present reconstruction results from volumetric
ultrasound measurement data, further analyzing computation
time and memory consumption.

III. ALGORITHMS

This section is dedicated to efficient forward and backward
projections of multilevel circulant and Toeplitz matrices, where
the first two sections III-A and III-B revise the procedure to
derive efficient implementations for “standard” circulant and
Toeplitz matrices.

A. Circulant Matrices

Define the mapping Γ : Cn → Cn×n for given n ∈ N and
c ∈ Cn

c 7→ Γ(c) =


c1 cn . . .c2

c2 c1
. . . c3

...
. . .cn

cncn−1. . .c1

 .
It is a well known fact, that for any c ∈ Cn it holds that

Γ(c) =
1

n
FH
n diag(Fnc)Fn, (4)

which allows to implement an efficient algorithm to calculate
the action, or forward transform, of Γ(c) or the action of
Γ(c)H, the backward transform, to a vector x ∈ Cn, i.e.,

y1 = Γ(c)x and y2 = Γ(c)Hx

by exploiting the Fast Fourier Transform (FFT) [14]. Moreover,
it allows storing Γ(c) memory-efficiently as Fnc, reducing the
memory complexity to O(n), compared to O(n2) as in the
case of unstructured matrices.

However, the key idea behind the FFT algorithm is also its
greatest caveat, because it only achieves reasonable performance
if n factors into many small prime factors. In the extreme case
where n is prime on the other hand, the FFT is not faster than a
standard matrix-vector multiplication. To alleviate this drawback
we combine zero-padding with the FFT algorithm to increase
the dimension n to a more feasible dimension in terms of its
prime factors. To this end we define the mapping ϕ : N→ N,
where ϕ(n) is the number of multiply-and-accumulate (MAC)
operations necessary to calculate Fnx for x ∈ Cn. Moreover,
we define Φ : N → N as Φ(n) = min argminm>2n−1 ϕ(m)
and γk : Cn → C2n−1+k as

γk(c) = [c1, . . . , cn,0
T
k , c2, . . . , cn]T.

The key idea is now to embed Γ(c) into a larger circulant
matrix Cc(c) ∈ CN×N , such that the possible bottleneck when
calculating Fn via an FFT is replaced by the shorter execution
time of the FFT for Fk for some k > 2n− 1.

Using the Cooley-Tukey algorithm for computing the FFT as
found in [15], an algebraic matrix representation can be derived,
which describes Fn as composition of Fν , with ν ∈ N being a
prime factor of n, and Fp with p ∈ N = n/ν being the order
of the square remainder matrix

Fn = P (ν)
n · (Iν ⊗Fp) ·D(ν)

n · (Fν ⊗ Ip). (5)
where D(ν)

n is a diagonal matrix of size n holding the FFT
twiddle factors corresponding to ν and P (ν)

n being the stride
permutation matrix which can be defined according to its effect
on a vector via

P (ν)
n · [x0, x1, . . . , xn−1]T = [y0, y1, . . . , yν−1]T,

where yi = [xi, xi+p, xi+2p, . . . , xi+(ν−1)p]. Analyzing (5) we
find a product of four square matrices of size n× n each. P (ν)

n

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1715

can be implemented through clever memory access, requiring
no additional ops, whereas D(ν)

n requires n MAC operations.
The anterior Kronecker product resembles a block diagonal
matrix with ν copies of the remainder matrix requiring ν · ϕ(p)
MAC ops and, given ν = n no operations at all, as it then
equals to the identity matrix. The posterior Kronecker product
is a structured sparse matrix, requiring p · ν2 = ν · n MAC ops.
In total, (5) requires ν · ϕ(p) + (ν + 1)n MAC ops. Defining
ψn ∈ Nw as the prime factor decomposition of n with w being
the prime factor count, we recursively apply (5) over all ψn,i
resulting in a total complexity of

ϕ(n) = n · (1 + w +
w∑
i=1

ψn,i). (6)

The special case ν = 4 needs to be considered carefully during
the implementation of the aforementioned optimization problem.
As all elements in F4 are drawn from the set (1,−1, i,−i)
only simple additions are required in order to compute its action
on a vector. Many current computing platforms are capable of
exploiting this, resulting in an additional gain over the estimate
ϕ(4). The implementation used in this work employs a variant
of Dijkstra’s algorithm [16] for the search and rewards prime
factors of four on grounds of the preceding consideration. To
incorporate above finding about φ in our procedure, we define

Cn(c) =

{
Γ(c), for ϕ(Φ(n)) > ϕ(n)

Γ(γΦ(n)−2n−1(c)) otherwise.
The case ϕ(Φ(n)) > ϕ(n) represents the fact that we cannot
improve the execution time needed to apply Fn by expanding
the circulant matrix. To finalize the procedure note that for
k ∈ N and x ∈ Cn it holds that[

y1

z

]
= Γ(γk(c)) ·

[
x

0n−1+k

]
, where y1 = Γ(c) · x

with y1 ∈ Cn and z ∈ Cn−1+k. As such, the application of
Γ(γk(c)) to a vector can be carried out efficiently according
to (4).

B. Toeplitz Matrices

The concepts of Section III-A can be extended to the more
general case, where the matrix is not circulant, but Toeplitz
instead. For n ∈ N and t ∈ C2n−1, we define a mapping
Θ : C2n−1 → Cn×n via

t 7→ Θ(t) =


t1t2n−1. . . tn+1

t2 t1
. . .

...
...

.t2n−1

tn tn−1 . . . t1

 .
Similar to γk before, we define a mapping ϑk : C2n−1 →
C2n−1+k, as

ϑk(t) = [t1, t2, . . . , tn,0k, tn+1, . . . , t2n−1]T.

With this definition at hand it is clear that for t ∈ C2n−1,
x ∈ Cn and z ∈ Ck the relation[

Θ(t) · x
z

]
= Γ(ϑk(t)) ·

[
x
0k

]
(7)

holds for any k > 0. This implies that Toeplitz matrices also
have an efficient forward and backward transform by means of
the algorithm provided for circulant matrices. Again, we need

to find a suitable k > 0, such that the calculations in (7) are
most efficient. To this end, we simply set

k = min argmin
`>0

ϕ(2n− 1 + `).

C. Multilevel Circulant Matrices

As a next generalization, we define so called multilevel
circulant matrices, which are not circulant by themselves,
but consist of multiple nested levels of circulant structures.
Let d > 2, n = [n1, . . . , nd], n1− = [n1, . . . , nd−1] and
n−1 = [n2, . . . , nd]. Then, given a d-dimensional complex
sequence c = [ck] for the multi index k ∈ Nd a d-level circulant
matrix Cn,d is recursively defined as

Cn,d =


C[1,n−1],` C[n1,n−1],` . . .C[2,n−1],`

C[2,n−1],` C[1,n−1],` . . .C[3,n−1],`

...
...

. . .
...

C[n1,n−1],`C[n1−1,n−1],`. . .C[1,n−1],`

 ,
where ` = d− 1. So for n = [2, 2] and c ∈ C2×2 we get

C[2,2],2 =

[
C[1,2],1 C[2,2],1

C[2,2],1 C[1,2],1

]
=


c1,1 c1,2 c2,1 c2,2
c1,2 c1,1 c2,2 c2,1
c2,1 c2,2 c1,1 c1,2
c2,2 c2,1 c1,2 c1,1

 .
It is worth noting that we stick with c containing all defining
elements as the representation of a circulant matrix even in the
d-level case, where c then becomes a tensor of order d as a
natural extension to the circulant case for d = 1. To clarify how
the elements in c are placed into Cn,d, we note that

C[n1,...,nd−1,k],1 = Γ
(
c[n1,...,nd−1,k]

)
for all k = 1, . . . , nd. In spirit of the sections before, we aim
at providing efficient means of storing Cn,d and applying
its forward and backward transform to a vector. To exploit
the multilevel structure, we exploit the diagonalization of a
multilevel circulant matrix [13], being

Cn,d =
d⊗
i=1

1

ni
FH
ni

diag

(
d⊗
i=1

Fni
· vec c

)
d⊗
i=1

Fni
.

(8)
This expression directly yields an algorithm to efficiently
multiply Cn,d with a vector, because Fourier matrices have a
fast algorithm, and [17] describes how to efficiently compute the
forward and backward transform of a Kronecker product, which
also only makes use of the forward and backward transform of
the factors involved.

D. Multilevel Toeplitz Matrices

Similar to the previous section, we can also efficiently handle
the more general multilevel Toeplitz case. Let d > 2. Then,
given a d-dimensional complex sequence t = [tk] for the multi
index k ∈ Nd, a d-level Toeplitz matrix Tn,d is recursively
defined as

T(n,d)(t) =


T(1,m),` T(2n1−1,m),` . . . T(n1+1,m),`

T(2,m),` T(1,m),` . . . T(n1+2,m),`

...
...

. . .
...

T(n1,m),` T(n1−1,m),` . . . T(1,m),`

 ,

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1716

where m = n−1 and ` = d− 1. For example, n = [2, 2] and
t ∈ C3×3 yields

T[2,2],2 =

[
T[1,2],1 T[3,2],1

T[2,2],1 T[1,2],1

]
=


t1,1 t1,3 t3,1 t3,3
t1,2 t1,1 t3,2 t3,1
t2,1 t2,3 t1,1 t1,3
t2,2 t2,1 t1,2 t1,1

 .
We also retain the notation t for the defining elements of T(n,d)

and it naturally becomes a tensor of order d. As in Section III-B
we describe how a d-level Toeplitz matrix can be embedded
into a larger d-level circulant matrix such that one can use the
efficient methods available for those to apply T(n,d) to a vector.

For a given block Toeplitz matrix Tn,m ∈ Cnm×nm, which
reads as

T =


T1 T2n−1 . . . Tn+1

T2 T1
. . .

...
...

.
...

Tn Tn−1 . . . T1

 ,
which consists of 2n− 1 arbitrary matrices Ti ∈ Cm×m, we
define the mapping Gn,m : Cnm×nm → C(2n−1)m×(2n−1)m,
which extends the block Toeplitz matrix to a block circulant
matrix by

T 7→



T1 T2n−1 . . . Tn+1 . . . T2

T2 T1
. . .

... T3

...
.

...

Tn Tn−1 . . . T1

...
...

. . .
T2n−1 T2n−2 . . . T1


.

It is worth noting that for each n it holds that Gn,1(T) =
Γ
(
Θ−1(T)

)
for all Toeplitz matrices T .

To finalize the embedding of the matrix T(n,d) into a multilevel
circulant matrix, we iteratively apply the appropriate Gni,mj

via

T(T(n,d)) = Gn1,K



T`(T(1,m),`) . . .T`(T(n1+1,m),`)
T`(T(2,m),`) . . .T`(T(n1+2,m),`)

...
. . .

...
T`(T(n1,m),`) . . . T`(T(1,m),`)




where K = n2 · · · · ·nd. The matrix is by design d-level circulant
and can be diagonalized as in (8). For an appropriately chosen
index set S

T(T(n,d))S = T(n,d) (9)
holds. The set S can be constructed iteratively by keeping track
of inserted spurious columns and rows into T(T(n,d)) during
the above embedding procedure, compared to the original
T(n,d).

E. Block Multilevel Toeplitz Matrices

As outlined in Section II, the matrix H has a block structure,
where each block Hi,j for i, j = 0, . . . ,M − 1 is a 2-level
Toeplitz matrix, which is why we call H block multilevel
Toeplitz. As such, we can collect the unique defining elements
of H in h ∈ RM×M×2Nx−1×2Ny−1 and then set

Hi,j = T([Nx,Ny],2)(hi,j).

With the methods of the previous section we can diagonalize
each Hi,j . To this end, we embed each Hi,j into a 2-level
circulant matrix T2(H0,0) . . . T2(H0,M−1)

...
. . .

...
T2(HM−1,0) . . . T2(HM−1,M−1)

 = KH ·D ·K

(10)
for F = F2Nx−1 ⊗F2Ny−1, K = IM ⊗ F and

D =

 diag(F vec h̃0,0) . . . diag(F vec h̃0,M−1)
...

. . .
...

diag(F vec h̃M−1,0) . . . diag(F vec h̃M−1,M−1)

 ,
where each h̃i,j for i, j = 0, . . . ,M − 1 is chosen such that
they contain the defining elements of the corresponding 2-level
circulant matrix T2(Hi,j) in the 2D frequency domain. Because
of the block diagonal structure of H in the basis K, which
posses an efficient transform in and from this basis, the whole
matrix T2(Hi,j) posses an efficient matrix-vector multiplication.

F. Implementation

Recently, the authors’ group released a package called
fastmat [18] for the Python programming language, which
provides means of working with structured matrices in a very
convenient and efficient way, by hiding the implementational
complexity given rise by the need for fast matrix-vector products
from the user. Besides, fastmat also offers various SSR
Algorithms like OMP and FISTA. The here described efficient
algorithms in eqs. (4) and (7) to (10), including the discussed
optimizations with respect to the FFT, are implemented there.
The corresponding code [19] is freely available. All simulations
and performance evaluations in this paper are carried out with
this package.

IV. ULTRASOUND RECONSTRUCTION

In this section, we first derive the structure of the dictionary
H and then exploit it by using its forward and backward
transform in an SSR algorithm.

Lemma IV.1. The matrix H ∈ RMNxNy×MNxNy from (2) is
block 2-level Toeplitz, where for the generating elements h it
holds that h ∈ RM×M×2Nx−1×2Ny−1.

Proof. We consider a column Hz1,x1,y1 of H with
(z1, x1, y1) ∈ G3D. If we now pick an arbitrary (z2, x2, y2) ∈
G3D, we see that

[Hz1,x1,y1]z2,x2,y2 = f(z1, z2, x1 − x2, y1 − y2),

for f(u, v, x, y) = 1
c t(x, y, u) · h(v − t(x, y, u)) with

t(x, y, z) =
√
x2 + y2 + z2. So the elements in a specific

block of H , which corresponds to the pair (u, v) and reads as
([Hu,i,j]v,k,`)(i,j)∈G2D,(k,`)∈G2D

is 2-level Toeplitz because of the translational invariance with
respect to x1,2 and y1,2. Then, the asserted structures of H
and h follow easily.

The computational advantage one obtains from exploiting
this structure with respect to matrix-vector products is depicted
in fig. 1, where we compare the performance of the fastmat

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1717

103 104 105

10−4

10−2

100

Matrix Size

tim
e

[s
]

unstructured
structured

Figure 1. Comparison of matrix-vector multiplication with the block 2-level
Toeplitz matrices in terms of computation time.

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

x in (cm)

y
in

(
c
m

)

∅2mm∅5mm∅3mm

−15 −10 −5 0 5 10 15

Figure 2. Reconstruction results: The OMP reconstruction (colored crosses)
and the correct positions of the FBHs (dotted circles) are plotted on top of a
3D SAFT image. The color marks the amplitudes of the OMP support.

implementation of Equation (10) to the standard matrix-
vector multiplication offered by numpy [20], which is very
prevalent in scientific computing with Python. Starting at a
matrix size > 1500 the fastmat version outperforms the
standard numpy version significantly. The higher computational
effort for lower matrix sizes stems from the fact that the
efficient implementation introduces a constant overhead, which
becomes negligible for larger problems. Next, we present
SSR reconstructions of a volumetric ultrasound measurement
of a steel specimen containing 32 Flat Bottom Holes (FBH)
with various diameters depicted in fig. 2 as dotted circles.
The measurements were acquired using a 4 MHz transducer
moved on a grid with ∆x = ∆y = 0.5 mm and sampled at
20 MHz leading to a data set of size 181× 381× 182. Further,
we assume a constant speed of sound c = 5900 m/s and
g(τx,y(xn, yn, zn)) = e−γznτx,y(xn,yn,zn). The parameter γzn
depends on the beam width of the transducer.

The reconstruction is performed using OMP stopped after
110 iterations. We run more iterations than defects present, since
due to the model mismatch, most defects require more than one
support element in the solution to account for the energy at the
defects position. The result is shown as colored cross marks in
fig. 2. The reconstruction was performed on a High Performance
Computing Cluster requiring an average memory of 333 GB.
Utilizing 16 CPU cores, a single OMP iteration takes about
3 min. OMP reconstructs all FBHs. Note that the difference
between the two groups of 5 mm holes is that the upper group
has the same depth, while the lower group has three different
depths. For comparison, a 3D SAFT reconstruction of the same
measurement using Stolt’s migration [21] is put underneath the

OMP reconstruction in fig. 2.

V. CONCLUSION

In conclusion, as one can see, the matrix-free SSR approach
yields similar results as 3D SAFT, but due to the freedom one
can exploit when designing H in eq. (3) the reconstruction
process can easily be adapted to more complex specimen
geometries, physical propagation effects, flaw shapes, and
measurement setups without changing the reconstruction method,
whereas for SAFT the implementation has to be specifically
tailored to a certain scenario. Last, but not least, one can easily
extend the SSR approach to a CS [9] scheme allowing data
reduction, which we leave to further publications.

REFERENCES

[1] C. Holmes, B. Drinkwater, and P. Wilcox, “The post-processing of
ultrasonic array data using the total focusing method,” Insight-NDT and
Condition Monitoring, vol. 46, no. 11, pp. 677–680, 2004.

[2] A. Tweedie, R. L. O’Leary, G. Harvey, A. Gachagan, C. Holmes, P. D.
Wilcox, and B. W. Drinkwater, “Total focussing method for volumetric
imaging in immersion non destructive evaluation,” in IEEE IUS, Oct 2007.

[3] M. Spies, H. Rieder, A. Dillhöfer, V. Schmitz, and W. Müller, “Synthetic
aperture focusing and time-of-flight diffraction ultrasonic imaging—past
and present,” Journ. of NDE, vol. 31, pp. 310–323, 2012.

[4] A. Tuysuzoglu, J. M. Kracht, R. O. Cleveland, M. C¸etin, and W. C.
Karl, “Sparsity driven ultrasound imaging,” The Journal of the Acoustical
Society of America, vol. 131, no. 2, pp. 1271–1281, 2012.

[5] J. Kirchhof, F. Krieg, F. Römer, A. Ihlow, A. Osman, and G. Del Galdo,
“Sparse Signal Recovery for Ultrasonic Detection and Reconstruction of
Shadowed Flaws,” in IEEE ICASSP, March 2017.

[6] H. Wu, J. Chen, S. Wu, H. Jin, and K. Yang, “A model-based regularized
inverse method for ultrasonic B-scan image reconstruction,” Measurement
Science and Technology, vol. 26, no. 10, p. 105401, 2015.

[7] G. David, J.-l. Robert, B. Zhang, and A. F. Laine, “Time domain
compressive beam forming of ultrasound signals,” Journ. of the Acoust.
Soc. of America, vol. 137, no. 5, pp. 2773–2784, 2015.

[8] M. Karimi, P. Croaker, and N. Kessissoglou, “Acoustic scattering for 3D
multi-directional periodic structures using the boundary element method,”
Journ. of the Acoust. Soc. of America, vol. 141, no. 1, pp. 313–323, 2017.

[9] E. J. Candes and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies?” IEEE Trans. Inf. Theor.,
vol. 52, no. 12, pp. 5406–5425, Dec. 2006.

[10] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm
with application to wavelet-based image deblurring,” in IEEE ICASSP,
April 2009, pp. 693–696.

[11] Y. C. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal Matching
Pursuit: recursive function approximation with applications to wavelet
decomposition,” in 27th Asil. Conf. Signals, Systems Comp., Nov 1993.

[12] S. Fourcat and H. Rauhut, A mathematical introduction to compressive
sensing, 1st ed. Birkhäuser Basel, 2013.

[13] P. J. Davis, Circulant Matrices, 1st ed., ser. Pure & Applied Mathematics.
John Wiley & Sons Inc, 1979.

[14] J. Cooley and J. Tukey, “An algorithm for the machine calculation of
complex Fourier series,” Math. of Comp., vol. 19, no. 90, 1965.

[15] A. Cortés, I. Vélez, and F. Sevillano, Juan, “Radik rk FFTs: Matricial
representation and SDC/SDF pipeline implementation,” IEEE Transactions
on Signal Processing, vol. 57, no. 7, pp. 2824–2839, 2009.

[16] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[17] P. Fernandes, B. Plateau, and W. J. Stewart, “Efficient descriptor-vector
multiplications in stochastic automata networks,” J. ACM, vol. 45, 1998.

[18] C. Wagner and S. Semper, “Fast linear transformations in python,”
arXiv:1710.09578, 2017.

[19] S. Semper and C. Wagner, “fastmat,” https://github.com/EMS-TU-
Ilmenau/fastmat, 2017.

[20] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: A
structure for efficient numerical computation,” Computing in Science &
Engineering, vol. 13, no. 2, pp. 22–30, 2011.

[21] R. H. Stolt, “Migration by Fourier transform,” Geophysics, vol. 43, Feb.
1978.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1718

