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ABSTRACT

Far-field automatic speech recognition (ASR) is a key en-
abling technology that allows untethered and natural voice in-
teraction between users and Amazon Echo family of products.
A key component in realizing far-field ASR on these products
is the suite of audio front-end (AFE) algorithms that helps in
mitigating acoustic environmental challenges and thereby im-
proving the ASR performance. In this paper, we discuss the
key algorithms within the AFE, and we provide insights into
how these algorithms help in mitigating the various acoustical
challenges for far-field processing. We also provide insights
into the audio algorithm architecture adopted for the AFE,
and we discuss ongoing and future research.

Index Terms— Beamforming, far-field, AFE, deep neu-
ral networks, ASR, Amazon Echo.

1. INTRODUCTION

The launch of Amazon Echo propelled the use of far-field
ASR in the consumer electronics space, as it enabled an un-
tethered and natural voice interaction by allowing users to in-
teract with the device from several meters away. The first
version of Echo device allowed users to ask questions related
to weather, traffic, news, and to stream audio content from the
device. Since its launch, the Echo family of devices and their
functionalities have grown considerably; users can now re-
quest the device to stream videos, make voice calls, pair Echo
devices to their existing home audio systems, and so on.

A user query for Amazon Echo is typically phrased as:
“Alexa, what is the time?”, where the first word Alexa is
called the wake-word (WW) (to get the device’s attention),
and the remaining part of the utterance is termed as the voice
command. One of the primary challenges for Echo devices
to scale to millions of households was to cope up with the
unknown acoustical conditions in users homes, which include
varying levels of acoustic echo, noise and reverberation; the
acoustic interference in the room can significantly impair the
spoken utterance. While significant progress has recently
been made in the ASR and WW recognition performance
by using deep neural networks (DNNs) in acoustic model-
ing (AM) [1–3], their performance can be further improved

with a well-designed AFE [4–6]. Echo devices use a highly
specialized multi-channel (or multi-microphone) AFE, which
significantly improves the ASR and WW performance under
a variety of acoustic conditions. Note that for the rest of the
paper we will use the term smart-speaker instead of Amazon
Echo to avoid confusion with the term ‘acoustic echo’.

In addition to the acoustical challenges, we also need to
be cognizant of real-time and practical constraints that impact
the customer experience. For example, the latency constraint
dictates that the device should respond almost instantly when
the WW is spoken, or that bandwidth constraints may limit
us from transmitting large amounts of data from the device to
cloud infrastructure. In this paper, we provide details on the
key design tenets to combat the acoustic and practical chal-
lenges and constraints.

This paper is organized as follows. In Section 2, we
present the far-field acoustic environment for smart speakers.
In Section 3, we present the overall system model and its key
metrics. In Section 4, we provide insights into the various
approaches (signal processing and DNN) employed to miti-
gate the acoustic challenges. Section 5 provides experimental
results, and we provide conclusions in Section 6.

2. FAR-FIELD ACOUSTIC ENVIRONMENT

Figure 1 depicts the far-field acoustic environment for a
smart-speaker system. Here, the audio content is played out
of an L-loudspeaker system. The user’s speech is captured by
an array of M microphones; the room reflections cause the
recorded speech to be reverberant. The various noise sources
in the room generate the acoustic ambient noise. Lastly, the
audio content played out of the device’s loudspeakers is also
recorded at the microphones as multi-channel acoustic echo
(MAE). The ambient noise, reverberation, and MAE com-
ponents are lumped together as acoustic interference. The
signal acquired at the mth microphone can be expressed as:

xm(n) = gm(n) ∗ s(n)+
L∑

l=1

hl,m(n) ∗ul(n)+ vm(n), (1)

where n denotes the discrete time index, ∗ denotes convolu-
tion, s(n) denotes the clean speech signal, ul(n) denotes the
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Fig. 1. Acoustic environment for a smart-speaker system.

playback signal for the lth channel, vm(n) denotes the noise
at the mth microphone, and gm and hl,m denote the acous-
tic impulse responses between the mth microphone and the
speech source and the lth loudspeaker, respectively.

The AFE’s goal is to condition the playback signal for
optimal sound quality, and to mitigate the acoustic interfer-
ence in order to provide the highest quality of audio stream
to the ASR engine; an ideal AFE output signal is denoted by
y(n) = s(n− nd), where nd is AFE’s processing delay.

3. OVERALL SYSTEM-LEVEL MODEL AND KEY
METRICS

A smart-speaker’s response time to the wake-word is a very
important metric as it strongly ties to the user experience. In
addition, users also want the device to respond to their queries
with a high accuracy. In order to meet latency, bandwidth, and
performance constraints, we adopt the system model depicted
in Figure 2. The system processing is divided into two parts:
(a) on-device processing, which comprises of the AFE algo-
rithms and the WW (wake-word) engine, and (b) processing
on Amazon’s cloud infrastructure, which hosts the ASR, nat-
ural language understanding (NLU), and the text-to-speech
(TTS) engines, along with other Alexa services. As noted,
the microphone data is first processed by the AFE algorithms,
and its output is sent to the WW engine. If Alexa keyword
is detected, the WW engine streams the user utterance to the
cloud where the ASR and NLU engines work in tandem to
decode the spoken utterance. Thereafter, Alexa’s response (to
the decoded utterance) is played through the device’s loud-
speaker for the user. In the following sections, we will mainly
focus on the AFE algorithms.

Although each algorithm within the AFE is driven by its
own metrics, there are four global metrics on which all AFE
algorithms have been optimized. These are: (a) Word-error-
rate (WER), which is a key metric for the ASR engine and it
is defined as the ratio of the decoding errors (insertion, dele-
tion, and substitution) and the total number of valid words [4],
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Fig. 2. Block diagram of the overall system.

(b) False-rejection-rate (FRR), which is a key metric for the
WW engine and it measures the percentage of missed WW
commands, (c) latency, which is defined as the processing de-
lay that the AFE introduces in both the playback and capture
paths, and (d) computational cost of the algorithms.

4. AUDIO FRONT-END

Figure 3 depicts the block diagram for the AFE architecture.
For the microphone capture path, we use the subband pro-
cessing framework, which helps us to achieve a desirable al-
gorithmic performance for a low computational cost [7]. Au-
dio processing occurs on a frame-by-frame basis; the shaded
blocks receive an input audio frame and provide an output
audio frame, while the non-shaded blocks process an audio
frame to generate a system-state variable. The microphone
signals are first processed by an analysis filterbank to gener-
ate the subband samples. Next, we apply pre-processing on
the subband samples that include pre-emphasis filters and de-
lay correction. Next, the spatial processing and multi-channel
AEC (MCAEC) block provides further suppression of ambi-
ent noise and MAE. Thereafter, we process the audio frames
through a post filtering stage, which further helps in improv-
ing the signal-to-noise-ratio (SNR). Lastly, the audio frames
are synthesized back into time-domain before being sent to
the WW engine.

Spatial processing algorithms such as beamformers need
an estimate of the user’s bearings (i.e., look-direction) w.r.t.
the device . For this, we use source localization algorithms
to determine the likely direction of an active user. We also
make use of a sophisticated system-state control (SSC) mod-
ule, which takes into account the various system states (e.g.
talker/playback is active, Alexa is responding, noise condi-
tions, etc.), which are then used to control the various audio
algorithms. Lastly, the AFE also receives audio content such
as music and speech (e.g. Alexa response) from the cloud,
which is processed by playback enhancement algorithms (for
optimal sound experience) before being sent to the device’s
loudspeakers. In the following, we present the major AFE
algorithms in more details.
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Fig. 3. Block diagram for the AFE architecture.

4.1. Spatial Processing with Microphone Arrays

The microphone array on a smart-speaker is a key enabler of
far-field ASR. Array signal processing in itself is a well estab-
lished field with a focus towards narrowband signal process-
ing, for which it is relatively easier to design the array con-
figuration. However, designing microphone arrays for speech
processing is more challenging because speech is a wideband
signal that spans several octaves [4]. For smart-speakers, the
microphone arrays are designed through acoustic array prin-
ciples and the associated algorithms, and they are optimized
for the device’s form-factor.

Beamforming with microphone arrays allows us to opti-
mally combine the signals of multiple microphones in order
to enhance the speech arriving from the look-direction while
suppressing noise arriving from other directions. For AFE,
we have investigated both signal-processing and DNN-based
beamforming approaches, which are described next.

4.1.1. Signal Processing-Based Beamforming

One of the most generic forms of beamforming is the filter-
and-sum (F&S) structure, where the microphone signals
xm(n) are processed by the filters wm(n) and then summed
together to generate the beamformer output y(n):

y(n) =
M∑

m=1

wm(n) ∗ xm(n). (2)

The F&S processing can be broadly divided into two cate-
gories: (a) fixed beamformer (FBF), where wm’s are usually
optimized offline for a given look-direction, and they are sig-
nal and time-invariant, and (b) adaptive beamformer (ABF),
where the wm’s are both time and signal dependent.

The FBF is typically designed by posing the beamformer
design as a constrained optimization problem (e.g. super-
directive beamformer and its variants [4, 8]). For ABF, the
filters wm’s are optimized in real-time depending on the sig-
nal conditions. For example, in the well known minimum

variance distortionless response (MVDR) beamformer, one
needs to continuously update wm(n)’s based on the estimated
noise and signal statistics [8]. The constrained optimization
formulation of MVDR problem can be converted into an un-
constrained one by using the generalized sidelobe canceler
(GSC) framework [8]. Variants of the standard GSC algo-
rithm exist like the robust adaptive beamformer [5].

The smart-speaker uses beamforming algorithms that em-
ploy auxillary SSC and sound source localization (SSL) algo-
rithms in order to adapt to, and mitigate a variety of real-life
challenging noise conditions. These algorithms have been de-
signed using several hundred hours of real-world noisy speech
corpus, and their parameters have been tuned to achieve opti-
mal WER and FRR performance (results provided in Section
5). Further, they have been deployed on a variety of micro-
phone arrays, and they are being continuously improved with
new speech corpora.

4.1.2. DNN-Based Beamforming

DNNs have recently been deployed successfully for a range
of tasks including speech recognition and wake word model-
ing [1, 2]. They have also been gaining popularity on front-
end algorithms like beamforming. For example, there have
been two notable approaches on the application of DNN to
beamforming. The first approach is to estimate the parame-
ters of a beamformer directly [3]. The second approach fo-
cuses on using DNNs to classify the time-frequency tiles of
the signal into speech or interference, which is then used to
estimate the parameters of a traditional beamformer such as
MVDR. For AFE processing, we are pursuing the application
of DNN on SSL, intelligent system-state estimation and con-
trol, and spatial filtering algorithms.

For example, in [9] we present a neural network based
approach to two-channel beamforming. Single and cross-
channel spectral features were extracted to form a feature
map for each utterance. A large neural network composed
of a convolutional neural network (CNN), a long short-term
memory (LSTM) network, and a fully-connected DNN was
employed to estimate frame-level speech and noise spectral
masks simultaneously. One mask is estimated for the speech
and another for the interference. Based on these masks, cross-
power spectral density (CPSD) matrices were estimated and
the coefficients of the MVDR beamformer were computed.
A second smaller DNN was used to tune the phase in the
estimated steering vectors towards the target look direction.
Our results show that the proposed methods leads to a 21%
relative WER reduction over recent state-of-the-art systems
in the literature (refer [9, 10] for more details).

4.2. Multi-Channel Acoustic Echo Cancellation

The smart-speaker system can be used to play audio content
over both internal loudspeakers and from external loudspeak-
ers connected to the device over line-out (wired connection)
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Fig. 4. Block diagram for the MCAEC algorithm.

or bluetooth interfaces. The loudspeaker output is captured by
the microphones as MAE, which from (1) can be expressed
as xE =

∑L
l=1 hl,m(n) ∗ ul(n). The MAE component is the

most dominant acoustic interference for smart-speakers, and
we can make use of the MCAEC algorithm shown in Figure
4 to mitigate the MAE component [11]. Here, the playback
signals ul’s are used to estimate the acoustic echo paths hl’s,
and hence the MAE estimate, which is subtracted from the
microphone signal to obtain the MCAEC output. This output
signal is also used to update the filters ĥl’s with a time-varying
step-size that is provided by a step-size controller.

At a system level, the interaction between the MCAEC
and ABF algorithms poses some challenges. Firstly, we need
to decide whether the MCAEC should precede or follow the
ABF. If the MCAEC precedes the ABF, one can achieve bet-
ter source localization performance and relieve the MCAEC
adaptive filters from tracking the beamformer variations.
However, a drawback is that one would need an instance of
MCAEC for each microphone, which is computationally ex-
pensive. Another challenge is the decision logic to control the
adaptive filters for the ABF and MCAEC algorithms depend-
ing on the signal conditions. This topic is discussed in details
in [6]; for the AFE, we have optimized the system architec-
ture by taking into consideration the computational resources,
the microphone array, and the performance requirements.

4.3. Sound Source Localization

The knowledge of user’s look-direction is very important
for effective beamforming; for Echo products, we need to
estimate the look-direction from the microphone array sig-
nals. One of the well-known and robust SSL algorithm is the
steered response power (SRP) algorithm [12, 13]. Our analy-
sis and experiments indicate that good accuracy is achievable
for a moderate computational cost. The algorithm is based on
computing the power of signals arriving from all directions
of interest; by doing so, it is possible to identify the strongest
sources surrounding the array, and thereby, knowing the di-
rections of such sounds. Figure 5 shows the SRP response for

Peaks

Fig. 5. The steered response power as a function of azimuth
and elevation for an example where two sources are present.

the case where the microphone array is surrounded by two
sound sources. We can clearly see the two well-formed peaks
in the SRP response.

By analyzing the SRPs as a function of time, it is pos-
sible to identify the sources with the highest power, and to
derive tracks containing the directions of sound sources as a
function of time. Numerous methods can be used to further
smooth the track leading to more concise parameters of the
sound source [14]. For multiple sound sources, the informa-
tion of the tracks can be used to guide the beamformer so
as to simultaneously listen to different directions surrounding
the microphone array.

4.4. Post-Filtering

The output of the ‘Spatial Processing & MCAEC’ module
may contain residual echo and noise. This usually happens
because of loudspeaker nonlinearities or because the noise
and speech sources are positioned close to each other. In
this case, post filtering algorithms may be used to apply time-
frequency processing to discriminate between desired speech
and interference. In the past, the post-filtering algorithms
have been designed by framing the problem as multi-channel
Wiener filter [4, 8]; however, in the context of AFE, the post-
filter should jointly consider both residual echo and ambient
noise as interference. The parameters of the post-filter are op-
timized over large corpus of noisy speech signal, and a well-
designed post-filter that works in tandem with the upstream
algorithms can further improve the AFE performance.

5. RESULTS

The AFE is highly customizable and it fits within the com-
putational budget of every Echo device. Furthermore, the la-
tency introduced by the AFE is a small fraction of the time
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it takes to say ‘Alexa’. For WER evaluation, we utilized
an internal dataset with 39027 utterances that were collected
from 49 participants under a variety of ambient noise condi-
tions. Table 1 provides the relative WER reduction offered
by the AFE algorithms over raw microphones for three dif-
ferent SNR conditions (low, medium, and high). For the FRR
evaluation, we utilized an internal dataset with 92400 WW
instances that were captured from 330 participants under a
variety of device playback conditions. Table 2 provides the
relative FRR reduction offered by the AFE algorithms over
raw microphones for three different playback conditions (low,
medium, high); the sound pressure levels (in dBC) at 1 m
away from the device are provided in the table. From these
results, we note that AFE significantly helps in improving the
WER and FRR performance.

Table 1. Relative WER reduction through AFE processing.

SNR (dB) Utterances Relative WER
Reduction (%)

[-20, 4) - Low 19348 45.5
[4, 8) - Medium 12982 27.5
[8, 30] - High 6697 17.5
Overall 39027 39.7

Table 2. Relative FRR reduction through AFE processing.

Playback Level WW Instances Relative FRR
1 m away (dBC) Reduction (%)
[60, 65] - Low 18480 92.4
[70, 75] - Medium 36960 83.9
[80, 85] - High 36960 60.2
Overall 92400 75.7

6. CONCLUSIONS

Smart-speakers are being used in increasingly challenging en-
vironments, and the AFE has to keep up with the new de-
mands. While significant improvements have been achieved
in ASR performance, we continue to pursue new ideas to im-
prove the AFE’s performance. For example, we are pursu-
ing improvements in performance of DNN in beamforming,
MCAEC, and SSL algorithms. Robustness is a key criterion
for the AFE algorithms, and we continue to explore better
models to improve the robustness of AFE by adaptively learn-
ing the environmental parameters.
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