
Subspace-Orbit Randomized-Based Decomposition
for Low-Rank Matrix Approximations

Maboud F. Kaloorazi
CETUC, Pontifical Catholic University

of Rio de Janeiro (PUC-Rio), Brazil
Email: kaloorazi@cetuc.puc-rio.br

Rodrigo C. de Lamare
CETUC, PUC-Rio, Brazil

Department of Electronics, University of York, UK
Email: delamare@cetuc.puc-rio.br

Abstract—In this paper we introduce a novel matrix decom-
position algorithm termed Subspace-Orbit Randomized Singular
Value Decomposition (SOR-SVD). It is computed by using ran-
dom sampling techniques to give a low-rank approximation to
an input matrix. Given a large and dense data matrix of size
m×n, SOR-SVD requires a few passes through data to compute a
rank-k approximation in O(mnk) floating-point operations. Fur-
thermore, SOR-SVD can utilize advanced computer architectures
and, as a result, it can be optimized for maximum efficiency. The
SOR-SVD algorithm is simple, accurate, and provably correct,
and outperforms previously reported techniques in terms of
accuracy and efficiency.

Index Terms—Matrix decomposition, low-rank approximation,
randomized algorithms, numerical linear algebra.

I. INTRODUCTION

Computing a low-rank approximation to a given data matrix
is a fundamental task in numerical linear algebra and its appli-
cations. Such a low-dimensional representation of a matrix can
provide a significant reduction in computational costs as well
as memory requirements. Matrices with low-rank structures
arise frequently in numerous applications such as latent vari-
able graphical modeling, [1], ranking and collaborative filter-
ing, [2], background subtraction [3], [4], system identification
[5], IP network anomaly detection [6], [7], biometrics [8],
sensor and multichannel signal processing [9], and statistical
process control and multidimensional fault identification [10].

Traditional algorithms for constructing a low-rank
approximation to a matrix, such as singular value
decomposition (SVD) [11] and the rank-revealing QR
factorization [12] can become computationally prohibitive for
large data sets. Recently developed low-rank approximation
algorithms based on random sampling techniques have been
shown to be surprisingly efficient, accurate and robust, and
are known to outperform their traditional counterparts in
many practical situations [13]–[18]. The power of randomized
methods lies in the fact that they can be optimized for
maximum efficiency on modern architectures.

The methods in [13], [14], [19], [20] first sample columns
of a data matrix with a probability proportional to either
their magnitudes or leverage scores, representing the matrix
in a compressed form. The submatrix is then used for further
computations using algorithms such as the SVD and pivoted
QR decomposition to obtain the final low-rank approximation.
Sarlós [15] proposed a different method based on the well-
known Johnson-Lindenstrauss (JL) lemma [21]. He showed
that random linear combinations of rows can render a good

approximation to a low-rank matrix. The works in [22], [23]
also construct a low-rank approximation based on subspace
embedding. Rokhlin et al. [16] propose to apply a random
Gaussian embedding matrix in order to reduce the dimension
of the data matrix, and a low-rank approximation is then given
through computations of the reduced-sized matrix. Halko et al.
[17] first form a low-dimensional subspace through a random
linear combinations of matrix columns. Further computations
on the reduced-sized matrix gives a low-rank approximation.
Gu [18] uses a slightly modified version of the randomized
algorithms of [17] to improve subspace iteration methods, and
presents a new error analysis. The work in [4] proposes a rank-
revealing decomposition based on randomized sampling, and
applies it for solving the robust PCA problem.

In this paper, we propose a randomized decompositional
approach called subspace-orbit randomized singular value de-
composition (SOR-SVD) to compute a rank-k approximation
to an input matrix. SOR-SVD requires a few passes over the
data for a large and dense matrix of size m × n, and is
computed in O(mnk) floating-point operations (flops). The
main operations of SOR-SVD involve matrix-matrix multi-
plication and the QR decomposition, and due to recently
developed Communication-Avoiding QR (CAQR) algorithms
[24], which are optimal in terms of communication costs, it
can be optimized for peak machine performance on modern
computational platforms. We provide, without proof due to
lack of space, theoretical lower bounds on the singular values
and upper bounds on the error of the low-rank approximation
for the SOR-SVD algorithm. We also experimentally verify
that the Frobenius norm error bound provided is empirically
sharp for one class of low-rank matrices.

We structure the remainder of this paper as follows. In
Section II, we discuss prior works and the problem we are
interested in solving. In Section III, we describe our proposed
approach, which also includes a variant that uses the power
iteration in detail. In Section IV, we present and discuss our
experimental results, and our conclusion is given in Section V.

II. PROBLEM STATEMENT AND PRIOR WORKS

Given a matrix A ∈ Rm×n, where m ≥ n, with numerical
rank k, its SVD is defined as follows:

A = UΣVT =
[
Uk U0

] [Σk 0
0 Σ0

] [
Vk V0

]T
, (1)

where Uk ∈ Rm×k, U0 ∈ Rm×n−k have orthonormal
columns, Σk ∈ Rk×k and Σ0 ∈ Rn−k×n−k are diagonal

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2636



containing the singular values, i.e., Σk = diag(σ1, ..., σk) and
Σ0 = diag(σk+1, ..., σn), and Vk ∈ Rn×k and V0 ∈ Rn×n−k
have orthonormal columns. The SVD constructs the optimal
rank-k approximation Â = UkΣkV

T
k to A [25], [26], i.e.,

‖A− Â‖2 = σk+1,

‖A− Â‖F =
√
σ2
k+1 + ...+ σ2

n,
(2)

where ‖·‖2 and ‖·‖F denote the spectral norm and the
Frobenius norm, respectively. However, for large matrices,
computing the SVD is expensive and, furthermore, standard
techniques for its computation are challenging to parallelize
[17], [27], [28]. As a result, alternative computationally effi-
cient, accurate and robust algorithms which can easily lend
themselves to a parallel implementation are desired. Through-
out this paper we focus on the matrix A defined above.

Halko et al. [17] developed several randomized algorithms
for low-rank matrix approximation. One of their basic algo-
rithms for the matrix A and integers k ≤ ` < n and q is
computed as described in Alg. 1.
Algorithm 1 Randomized SVD (R-SVD)

Input: Matrix A ∈ Rm×n, integers k, ` and q.
Output: A rank-` approximation.

1: Draw a random matrix Ω ∈ Rn×l;
2: Compute Y = (AAT )qAΩ;
3: Compute a QR decomposition Y = QR;
4: Compute B = QTA;
5: Compute an SVD B = ŨΣVT ;
6: A ≈ (QŨ)ΣVT .

Here q is the number of steps of a power method [16],
[17]. Another approach proposed in [17, Section 5.5] is a
single-pass algorithm, i.e., it requires only one pass through
data, to compute a low-rank approximation. For the matrix A,
the decomposition, which we call two-sided randomized SVD
(TSR-SVD), is computed as described in Alg. 2.
Algorithm 2 Two-Sided Randomized SVD (TSR-SVD)

Input: Matrix A ∈ Rm×n, integers k and `.
Output: A rank-` approximation.

1: Draw random matrices Ω1 ∈ Rn×` and Ω2 ∈ Rm×`;
2: Compute Y1 = AΩ1 and Y2 = ATΩ2 in a single pass

through A;
3: Compute QR decompositions Y1 = Q1R1, Y2 = Q2R2;
4: Compute Bapprox = QT

1 Y1(QT
2 Ω1)†;

5: Compute an SVD Bapprox = ŨΣ̃Ṽ;
6: A ≈ (Q1Ũ)Σ̃(Q2Ṽ)T .

In Alg. 2, Bapprox is an approximation to B = QT
1 AQ2,

and the dagger † denotes the pseudo-inverse.
The TSR-SVD, however, substantially degrades the quality

of the approximation, compared to the R-SVD, making it
unsuitable for use in practice. The reason behind is, chiefly,
poor approximate bases drawn from the row space of A, i.e.,
Q2. Furthermore, the authors do not provide error bounds, nei-
ther upper bounds on the error of the low-rank approximation
nor lower bounds on the singular values, for the TSR-SVD
algorithm. This work addresses these issues.

This work develops a randomized algorithm for low-rank
approximation that with comparable flops i) outperforms the
TSR-SVD in terms of accuracy, and ii) can utilize advanced
computer architectures better than the R-SVD.

III. SUBSPACE-ORBIT RANDOMIZED SINGULAR VALUE
DECOMPOSITION

In this section, we present a randomized algorithm termed
subspace-orbit randomized SVD (SOR-SVD) [29] that com-
putes a low-rank approximation of a given matrix using
randomization. We also present a version of SOR-SVD with
power method, which improves the performance of the algo-
rithm at an extra cost.

Given the matrix A, and an integer k ≤ ` < n, SOR-SVD
is computed by taking the following seven steps:

1) Generate a standard Gaussian matrix Ω ∈ Rn×`,
2) Compute the matrix product:

T1 = AΩ, (3)

The matrix T1 ∈ Rm×` is formed through linear
combinations of columns of A by Ω. T1, in fact, is a
projection onto the subspace spanned by columns of A.

3) Compute the matrix product:

T2 = ATT1, (4)

The matrix T2 ∈ Rn×` is constructed by linear
combinations of rows of A by T1. T2, in fact, is a
projection onto the subspace spanned by rows of A.

4) Compute QR decompositions of T1 and T2:

T1 = Q1R1 and T2 = Q2R2, (5)

The matrices Q1 and Q2 are approximate bases for the
range of A and the range of AT , respectively.

5) Compute the matrix product:

M = QT
1 AQ2, (6)

M ∈ R`×` is formed by compression of A via left and
right multiplications by orthonormal bases.

6) Compute the rank-k truncated SVD of M:

Mk = ŨkΣ̃kṼk, (7)

7) Form SOR-SVD-based low-rank approximation of A:

ÂSOR = (Q1Ũk)Σ̃k(Q2Ṽk)T , (8)

where Q1Ũk ∈ Rm×k and Q2Ṽk ∈ Rn×k are
approximations to the k leading left and right singular
vectors of A, respectively, and Σ̃k contains an
approximation to the k leading singular values of A.

The SOR-SVD, described in its basic form, requires three
passes over data, for a matrix stored-out-of-core, but it can be
modified to revisit the data only once. To this end, the matrix
M (6) can be approximated as follows: both sides of the cur-
rently unknown equation M = QT

1 AQ2 are postmultiplied by
QT

2 Ω, obtaining MQT
2 Ω = QT

1 AQ2Q
T
2 Ω. Having defined

A ≈ AQ2Q2 and T1 = AΩ, then Mapprox = QT
1 T1(QT

2 Ω)†.
Unlike TSR-SVD, SOR-SVD projects A onto a subspace

spanned by its rows using a sketch of A. This significantly

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2637



improves the approximate basis for the range of AT and,
moreover, results in tighter theoretical bounds.

The SOR-SVD may be fairly accurate for matrices whose
singular values display some decay, but for matrices with
slowly decaying singular spectrum, it may produce a poor
approximation compared to that of the SVD. Thus, we incor-
porate q steps of a power iteration [17] to improve the accuracy
of the algorithm in these circumstances. Given A, k ≤ ` < n
and q, the resulting algorithm is described in Alg. 3.

Algorithm 3 The SOR-SVD algorithm with Power Method

Input: Matrix A ∈ Rm×n, integers k, ` and q.
Output: A rank-k approximation.

1: Draw a standard Gaussian matrix T2 ∈ Rn×`;
2: for i = 1: q + 1 do
3: Compute T1 = AT2;
4: Compute T2 = ATT1;
5: end for
6: Compute QR decompositions T1 = Q1R1, T2 = Q2R2;
7: Compute M = QT

1 AQ2 or Mapprox = QT
1 T1(QT

2 T2)†;
8: Compute the rank-k truncated SVD

Mk = ŨkΣ̃kṼk or Mapprox-k = ŨkΣ̃kṼk;
9: Form the SOR-SVD-based low-rank approximation of A:

ÂSOR = (Q1Ũk)Σ̃k(Q2Ṽk)T .

Note that when the power method is employed a non-
updated T2 must be used in order to form Mapprox.

The accuracy of singular values and the low-rank
approximation of A computed by the SOR-SVD algorithm,
as stated in the next subsection, depends strongly on the ratio
σ`−p+1

σj
for j = 1, ..., k, and on σ`−p+1

σk
, respectively, where

2 ≤ p ≤ ` − k is an oversampling parameter. The power
method decreases the extra factors in the error bounds by
driving down the aforesaid ratios exponentially fast.

A. Deterministic Error Bounds
Our analysis of SOR-SVD was inspired by the work in [18].

Let the matrix A have an SVD defined in (1), Ω ∈ Rn×`
(or T2 in Alg. 3) be a standard Gaussian matrix, and 2 ≤
p ≤ ` − k, where ` is the number of samples and p is an
oversampling parameter. Decompose Ω such as

Ω̃ = VTΩ = [Ω̃T
1 Ω̃T

2 ]T (9)

where Ω̃1 and Ω̃2 have `−p and n− `+p rows, respectively.
The error bounds for SOR-SVD depend on the properties of
Ω̃1 and Ω̃2. The following theorem sets forth lower bounds
on approximated singular values.

Theorem 1: Suppose that the matrix A has an SVD defined
in (1), 2 ≤ p + k ≤ `, and ÂSOR is computed by SOR-SVD.
Assume that Ω̃1 is full row rank, then for j = 1, ..., k, we have

σj ≥ σj(ÂSOR) ≥ σj√
1 + ‖Ω̃2‖22‖Ω̃

†
1‖22
(
σ`−p+1

σj

)∆
, (10)

where ∆ = 4 for the basic form of the algorithm, and ∆ =
4q + 4 when the power method is used, i.e., Alg. 3.

The following theorem establishes upper bounds on the error
of the low-rank approximation.

Theorem 2: With the notation of Theorem 1, and % = 2, F ,
the low-rank approximation error must satisfy

‖A− ÂSOR‖% ≤‖Σ0‖% +

√
α2‖Ω̃2‖22‖Ω̃

†
1‖22

1 + β2‖Ω̃2‖22‖Ω̃
†
1‖22

+

√
η2‖Ω̃2‖22‖Ω̃

†
1‖22

1 + τ2‖Ω̃2‖22‖Ω̃
†
1‖22

,

(11)

where α =
√
k
σ2
`−p+1

σk
, β =

σ2
`−p+1

σ1σk
, η =

√
kσ`−p+1 and

τ =
σ`−p+1

σ1
. And when the power method is used, Alg.

3, α =
√
k
σ2
`−p+1

σk

(
σ`−p+1

σk

)2q

, β =
σ2
`−p+1

σ1σk

(
σ`−p+1

σk

)2q

,

η =
σk

σ`−p+1
α and τ =

1

σ`−p+1
β.

B. Average-Case Error Bounds

Since Ω is a random Gaussian matrix, we provide the
average-case error bounds for the SOR-SVD algorithm.

Theorem 3: With the notation of Theorem 1, and γj =
σ`−p+1

σj
for j = 1, ..., k, we have

E(σj(ÂSOR)) ≥ σj√
1 + ν2γ∆

j

, (12)

where E denotes expected value, ν = ν1ν2, ν1 =√
n− `+ p +

√
` + 7, and ν2 = 4e

√
`

p+1 . The exponent ∆ = 4
for the basic form of the algorithm, and ∆ = 4q+ 4 when the
power method is used, Alg. 3.

Theorem 4: With the notation of Theorem 1, for the basic
form of SOR-SVD, we have

E‖A− ÂSOR‖% ≤ ‖Σ0‖% + (1 + γk)
√
kνσ`−p+1, (13)

and when the power method is used, Alg. 3, we have

E‖A− ÂSOR‖% ≤ ‖Σ0‖% + (1 + γk)
√
kνσ`−p+1γ

2q
k , (14)

where γk and ν are defined in Theorem 3.

C. Computational Complexity

The cost of an algorithm involves both arithmetic, i.e., the
number of flops, and communication, i.e., data movement ei-
ther between different levels of a memory hierarchy or between
processors [24]. On multicore and accelerator-based comput-
ers, for a data matrix which is too large to fit in fast memory,
the communication cost becomes substantially more expensive
compared to the arithmetic [24], [30]. The power of random-
ized algorithms lies in the fact that they operate on a com-
pressed version of the data matrix rather than a matrix itself
and, moreover, they can be organized to exploit modern com-
putational platforms better than their classical counterparts.

To decompose A, the simple version of SOR-SVD incurs
the following costs: Step 1 costs O(n`), Step 2 costs O(mn`),
Step 3 costs O(mn`), Step 4 costs O(m`2 +n`2), Step 5 costs
O(mn` + m`2) (if M is approximated by Mapprox, this step
costs O(m`2 + n`2 + `3)), Step 6 costs O(`3), Step 7 costs
O(m`k + n`k). The dominant cost of Step 1-7 occurs when
multiplying A and AT with the corresponding matrices. Thus

CSOR-SVD = O(mn`). (15)

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2638



10 20 30
0

0.5

1

M
ag

ni
tu

de

10 20 30
0

0.5

1

30 40
1.5

2

2.5

3

`

‖A
−

Â
ou

t‖
F

30 40

1.529051

1.529056

1.529061

`

SVD

R-SVD

TSR-SVD

SOR-SVD

Fig. 1: Top: Comparison of singular values. Bottom: Comparison of low-rank
approximation errors. q = 0 (left), and q = 2 (right).

The sample size parameter ` is typically close to the minimal
rank k. The simple form of SOR-SVD requires either three or
two passes (when M is approximated by Mapprox) through data
to factor A. When the power method is incorporated (Alg. 3),
SOR-SVD requires either (2q + 3) or (2q + 2) passes (when
M is approximated by Mapprox) over the data with arithmetic
costs of (2q + 3)CSOR-SVD or (2q + 2)CSOR-SVD, respectively.

Except for matrix-matrix multiplications, which are easily
parallelizable, SOR-SVD performs two QR decompositions on
matrices of size m × ` and n × `, whereas R-SVD performs
one QR decomposition on an m×` matrix. Recently, Demmel
et al. [24] developed communication-avoiding QR decompo-
sition algorithms that perform the computations with optimal
communication costs. Thus, this step of both algorithms can
be implemented efficiently. In addition, SOR-SVD performs
an SVD on an ` × ` matrix M (or Mapprox), whereas the R-
SVD performs an SVD on a n×` matrix B in Alg. 1. Standard
techniques to compute an SVD, however, are challenging
for parallelization [27], [28]. Given a large input matrix A
for which a rank-k approximation to be computed, where
k ≤ `� min{m,n}, M (or Mapprox) would be much smaller
than B. Considering the size of M (or Mapprox) and, further,
having known that current advanced computers have hardware
switches that are controlled in software [30], the SVD of the
` × ` matrix can be computed either in-core on a sequential
processor or with minimum communication cost on parallel
processors. Thus, this step of SOR-SVD can be executed
efficiently. This significantly reduces the computational time
of SOR-SVD, an advantage of the algorithm over R-SVD.

IV. NUMERICAL EXPERIMENTS

We evaluate the performance of the SOR-SVD algorithm
through numerical tests, and compare it against the perfor-
mance of the SVD, R-SVD, and TSR-SVD algorithms. We
also experimentally investigate the tightness of the low-rank
approximation error bound for the Frobenius norm provided
in Theorem 2. The experiment is implemented in MATLAB.

25 30 35 40
2

4

6

8

10

`

M
ag

ni
tu

de

25 30 35 40

1.531461

1.531457

1.531453

`

Theoretical bound of Thr 2

‖A − ÂSOR‖F

Fig. 2: Comparison of the Frobenius norm error of the SOR-SVD algorithm with the
theoretical bound (Theorem 2). No power method, q = 0, (left), and q = 2 (right).

Due to space constraints, we only consider one type of low-
rank matrices to assess the behavior of the SOR-SVD algo-
rithm. For the sake of simplicity, we focus on square matrices.

The matrix of our test is a noisy rank-k matrix A ∈
R1000×1000, introduced by Stewart [31], generated as A =
UΣVT + 0.1σkE, where U and V are random orthonormal
matrices, Σ is diagonal containing the singular values σis that
decrease geometrically from 1 to 10−9, σk+1 = ... = σ1000 =
0, and E is a normalized Gaussian matrix. We set k = 20.

We first compare the singular values computed by the
algorithms mentioned. We factor A using the randomized
algorithms with ` = 38, chosen randomly. All randomized
algorithms require the same number of passes through data,
either two or 2q + 2. Fig. 1 (top) illustrates the results. The
SOR-SVD uses a truncated SVD on the compressed matrix,
however we show the results for the full SVD, i.e., a full SVD
of the `× ` matrix, for the sake of comparison. Judging from
the figures, the SOR-SVD approximations to both leading and
trailing singular values outperform those of the TSR-SVD.

We now compare the reconstruction error of the algorithms
with respect to the Frobenius norm; we compute a rank-k
approximation Âout to A by varying the sample size parameter
` while the rank is fixed, and calculate the error:

ek = ‖A− Âout‖F . (16)

Fig. 1 (bottom) illustrates the results, demonstrating that the
R-SVD and SOR-SVD algorithms have similar behavior when
q = 0, exceeding the performance of the TSR-SVD algorithm.

A. Empirical Evaluation of SOR-SVD Error Bound

To evaluate the tightness of the bound provided by Theorem
2, we fix the rank k = 20 for out test matrix and, by increasing
the sample size parameter `, we form ÂSOR. A comparison
between the theoretical bound and what is achieved in practice
is shown in Fig. 2. The effect of the power method scheme can
be easily seen from the figures; when q = 2, the theoretical
bound closely tracks the error in the low-rank approximation
of Alg. 3. We conclude that the theoretical error bound is
empirically sharp.

V. CONCLUSION

In this paper we have proposed SOR-SVD, a randomized
algorithm that computes a low-rank approximation of an input
matrix. SOR-SVD is computationally efficient and outperforms
TSR-SVD in terms of accuracy. SOR-SVD can exploit modern
computational architectures better than R-SVD.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2639



REFERENCES

[1] V. Chandrasekaran, P. Parrilo, and A. Willsky, “Latent variable graphical
model selection via convex optimization,” The Ann. of Stat., vol. 40,
no. 4, pp. 1935–1967, 2012.

[2] N. Srebro, N. Alon and T. Jaakkola, “Generalization error bounds for
collaborative prediction with low-rank matrices,” in NIPS’04, 2004, pp.
5–27.

[3] J. Wright, Y. Peng, Y. Ma, A. Ganesh, and S. Rao, “Robust Principal
Component Analysis: Exact Recovery of Corrupted Low-Rank Matri-
ces,” Advances in Neural Information Processing Systems (NIPS), pp.
2080–2088, 2009.

[4] M. F. Kaloorazi and R. C. de Lamare, “Low-Rank and Sparse Matrix
Recovery Based on a Randomized Rank-Revealing Decomposition,” in
22nd Intl Conf. on Digital Signal Processing 2017, UK, Aug 2017.

[5] M. Fazel, T. K. Pong, D. Sun, and P. Tseng, “Hankel Matrix Rank Min-
imization with Applications to System Identification and Realization,”
SIAM. J. Matrix Anal. & Appl., vol. 34, no. 3, pp. 946–977, Apr 2013.

[6] M. Mardani, G. Mateos, and G. Giannakis, “Dynamic anomalography:
Tracking network anomalies via sparsity and low rank,” IEEE Journal
on Selected Topics in Signal Processing, vol. 7, no. 1, pp. 50–66, 2013.

[7] M. F. Kaloorazi and R. C. de Lamare, “Anomaly Detection in IP
Networks Based on Randomized Subspace Methods,” in ICASSP 2017,
Mar 2017.

[8] B. Victor, K. Bowyer, and S. Sarkar, “An evaluation of face and ear
biometrics,” in ICPR 2002, vol. 1, 2002, pp. 429–432.

[9] R. de Lamare and R. Sampaio-Neto, “Adaptive Reduced-Rank Pro-
cessing Based on Joint and Iterative Interpolation, Decimation, and
Filtering,” IEEE Transactions on Signal Processing, vol. 57, no. 7, pp.
2503–2514, Jul 2009.

[10] R. Dunia and S. Qin, “A Subspace Approach to Multidimensional Fault
Identification and Reconstruction,” AIChE J, vol. 44, no. 8, pp. 1813–
1831, Aug 1998.

[11] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed., Johns
Hopkins Univ. Press, Baltimore, MD, (1996).

[12] T. F. Chan, “Rank revealing QR factorizations,” Linear Algebra and its
Applications, vol. 88–89, pp. 67–82, Apr 1987.

[13] A. Frieze, R. Kannan, and S. Vempala, “Fast monte-carlo algorithms
for finding low-rank approximations,” J. ACM, vol. 51, no. 6, pp. 1025–
1041, Nov. 2004.

[14] P. Drineas, R. Kannan, and M. Mahoney, “Fast Monte Carlo Algorithms
for Matrices II: Computing a Low-Rank Approximation to a Matrix,”
SIAM Journal on Computing, vol. 36, no. 1, pp. 158–183, Jul 2006.

[15] T. Sarlós, “Improved approximation algorithms for large matrices via
random projections,” in 47th Ann. IEEE Symp. on Foundations of
Computer Science. FOCS ’06., vol. 1, Oct. 2006.

[16] V. Rokhlin, A. Szlam, and M. Tygert, “A randomized algorithm for
principal component analysis,” SIAM Journal on Matrix Analysis and
Applications (SIMAX), vol. 31, no. 3, pp. 1100–1124, 2009.

[17] N. Halko, P.-G. Martinsson, and J. Tropp, “Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix
decompositions,” SIAM Review, vol. 53, no. 2, pp. 217–288, Jun 2011.

[18] M. Gu, “Subspace Iteration Randomization and Singular Value Prob-
lems,” SIAM Journal on Scientific Computing, vol. 37, no. 3, pp. A1139–
A1173, 2015.

[19] A. Deshpande and S. Vempala, “Adaptive Sampling and Fast Low-Rank
Matrix Approximation,” Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques, vol. 4110, pp. 292–303,
2006.

[20] M. Rudelson and R. Vershynin, “Sampling from large matrices: An
approach through geometric functional analysis,” J. ACM, vol. 54, no. 4,
Jul. 2007.

[21] W. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings
into a Hilbert space,” in Contemporary Mathematics, vol. 26, 1984, pp.
189–206.

[22] J. Nelson and H. Nguyen, “Osnap: Faster numerical linear algebra
algorithms via sparser subspace embeddings,” in Proc. of 54th Annual
Symp. on FOCS ’13, 2013, pp. 117–126.

[23] K. Clarkson and D. Woodruff, “Low-rank approximation and regression
in input sparsity time,” J. ACM, vol. 63, no. 6, pp. 54:1–54:45, Jan.
2017.

[24] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, “Communication-
optimal Parallel and Sequential QR and LU Factorizations,” SIAM
Journal on Scientific Computing, vol. 34, no. 1, pp. A206–A239, 2012.

[25] C. Eckart and G. Young, “The approximation of one matrix by another
of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.

[26] L. Mirsky, “Symmetric gauge functions and unitarily invariant norms,”
Quarterly Journal of Mathematics, vol. 11, no. 1, pp. 50–59, 1960.

[27] J. Demmel, Applied Numerical Linear Algebra, SIAM, 1997.
[28] P.-G. Martinsson, G. Quintana-Orti, and N. Heavner, “randUTV: A

blocked randomized algorithm for computing a rank-revealing UTV
factorization,” Arxiv preprint arXiv:1703.00998, 2017.

[29] M. F. Kaloorazi and R. C. de Lamare, “Subspace-Orbit Randomized De-
composition for Low-Rank Matrix Approximations,” IEEE Transactions
on Signal Processing, 2018.

[30] J. Dongarra, S. Tomov, P. Luszczek, J. Kurzak, M. Gates, I. Yamazaki,
H. Anzt, A. Haidar, and A. Abdelfattah, “With Extreme Computing, the
Rules Have Changed,” Computing in Science and Engineering, vol. 19,
no. 3, pp. 52–62, May 2017.

[31] G. W. Stewart, “The QLP Approximation to the Singular Value Decom-
position,” SIAM Journal on Scientific Computing, vol. 20, no. 4, pp.
1336–1348, 1999.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2640


