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Abstract—In recent years the world’s biodiversity is declining
on an unprecedented scale. Many species are endangered and
remaining populations need to be protected. To overcome this
agitating issue, biologist started to use remote camera devices for
wildlife monitoring and estimation of remaining population sizes.
Unfortunately, the huge amount of data makes the necessary
manual analysis extremely tedious and highly cost intensive.
In this paper we re-train and apply two state-of-the-art deep-
learning based object detectors to localize and classify Serengeti
animals in camera-trap images. Furthermore, we thoroughly
evaluate both algorithms on a self-established dataset and show
that the combination of the results of both detectors can enhance
overall mean average precision. In contrast to previous work our
approach is not only capable of classifying the main species in
images but can also detect them and therefore count the number
of individuals which is in fact an important information for
biologists, ecologists, and wildlife epidemiologists.

I. INTRODUCTION

Due to the ongoing biodiversity crisis, many species are on the
brink of extinction. The current biodiversity crisis is observed all over
the planet [1]. Those agitating facts demonstrate the urgent need to
intensify close surveillance of threatened species in order to protect
the remaining populations. However, effectively protecting animals
requires good knowledge of existing populations and fluctuations
of population sizes over time. Unfortunately, it is a labor intensive
task to estimate population sizes in the wild. Nowadays, noninvasive
monitoring techniques which are based on automatic camera traps
are frequently being used and the number of published studies that
utilize autonomous recording devices is tremendously increasing [2].
Consequently, there is a high demand for automated algorithms which
are able to assist biologists in their effort to analyze remotely gathered
image and video recordings.

An interesting attempt to solve the problem of annotating huge
amounts of camera trap footage is the citizen science project Snapshot
Serengeti [3] where thousands of volunteers from the general public
annotate millions of images. However, also citizen science projects
like Snapshot Serengeti could benefit from the recent progress in
the field of computer vision making vast amount of valuable infor-
mation easily available for biologists and conservation researchers.
For instance it takes 2-3 months for the citizen science community
of Snapshot Serengeti to classify each 6-month batch of images.
As digital cameras become better and cheaper, more and more
conservation projects will use remote recording devices generating an
amount of data which cannot be handled even with the huge volunteer
community of projects like Snapshot Serengeti. Moreover, automatic
analysis can help to increase user engagement in manual annotation
intending to extend the length of a session a user keeps labeling
photographs. As shown in [4] the number of blank images presented
to a user influences the session length. Further experiments which
also include the species and the number of individuals on an image
have been considered by Zooniverse, the citizen science web platform
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which contains Snapshot Serengeti. Therefore the automatic detection
of the number and the type of animals - even if not fully correct -
can support the choice of pictures presented to users and thereby
increase session length. Unfortunately, detection and recognition of
animals in camera-trap images taken in uncontrolled environments
place high demands on automatic procedures due to occlusion, poor
illumination, and complex animal poses. Images showing the whole
animal body under ideal conditions are rare. Instead, in most cases
only parts of the animal body are visible, images are often over- or
underexposed and animals are frequently too far away or to close to
the camera. In this paper we will make a contribution to automize
the process of tedious image annotation by re-training, applying, and
combining two deep-learning based object detectors: YOLOV2 [5]
and SSD [6]. We will show that state-of-the-art object detectors are
capable of automatically localizing and classifying different species
in images taken in uncontrolled environments. For evaluation we
utilize the publicly available Snapshot Serengeti dataset [3] which
to date consists of 1.9 million capture events containing 3.2 million
images of 48 species annotated by voluntary members of the general
public. We will show that both detectors have different drawbacks
and the combination of YOLOvV2 and SSD improves the overall
detection performance. Although other attempts have been made to
automatically classify images of the Snapshot Serengeti database our
approach covers cases where previous methods fail. For instance the
works of [7], [8] only concentrate on estimating the presence/absence
of animal species in images, ignoring the fact that the number of
animals in an image is of huge interest for biologist. Furthermore,
their approaches cannot handle images were more than a single
animal species is present. Therefore, our approach can be seen as
complement to the works of [7], [8].

In summary, our contributions are as follows:

1) For the first time we re-train state-of-the-art deep-learning
based object detectors to automatically detect and classify
different animal species in the Snapshot Serengeti database.

2) We thoroughly evaluate and compare the results of two object
detectors: YOLOV2 [5] and SSD [6] and consequently

3) we show that both object detectors tend to make different kinds
of errors and thus can be successfully combined to improve
detection performance.

4) We not only evaluate the proposed system using standard
evaluation metrics for object detection but we also use the
output of the system to count the number of individual animals
and compare our automatic approach to human annotations.

The rest of the paper is organized as follows: In Section II we
first give an introduction to the Snapshot Serengeti project and then
briefly review the state of the art in object detection, particularly when
applied to the field of visual animal biometrics. The dataset we used
in our experiments as well as the experimental setup is described in
Section III. Also, the performance of both detectors as well as their
combination is discussed for animal detection and animal counting.
Section IV concludes and summarizes the paper and future directions
of research are indicated.
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II. BACKGROUND AND RELATED WORK

The emerging and highly interdisciplinary field of Animal Bio-
metrics aims at developing and applying approaches to automatically
detect, represent, and interpret phenotypic appearance of various
animal species [9]. Such algorithms can be used to detect animals in
audiovisual footage, recognize particular behaviors, classify different
species, or even identify individuals.

A variety of different approaches for animal detection [10], [11],
species classification [7], [8], [12] or even identification [13], [14] of
individuals in wildlife footage were presented in the recent past. The
closest works to ours are [7] and [8] which harness deep learning to
classify animals in camera trapped footage. Both approaches apply
very deep convolutional neural networks (CNNs) to automatically
identify animal species in the publicly available Snapshot Serengeti
dataset [3]. In [7], Gomez et al. compare the performance of several
CNN architectures when applied to the special task of species clas-
sification. Especially, it was studied how different deep architectures
can cope with the main challenges of image footage gathered in the
wild: unbalanced samples, empty frames, incomplete animal images,
and objects too far from focal distance. Norouzzadeh et al. [8] on
the other hand follow a two-step approach: First, they trained a CNN
to distinguish images that contain animals from images that do not.
They then trained a different network to actually classify the species.

Two main drawbacks of both approaches can be identified which
we will address in this paper. First, both methods only classify
the main species present in the images. However, none of these
approaches is going down to the individual level and count the
number of animals. Actually, this is an important information for
biologists when it comes to estimating occurrence or visitation rates
of certain locations. Thus, volunteers of the Serengeti Project not only
have to annotate the presence or absence of a certain animal species
but they also have to annotate the number of individuals present in the
images. Secondly, both works do not cover the case where more then
one species is present in the images. We will address both drawbacks
by re-training deep learning based object detectors which have the
potential to overcome above mentioned limitations. To the best of our
knowledge this is the first published case study which analyzes the
performance of deep learning based object detectors on the Snapshot
Serengeti dataset.

III. EXPERIMENTS AND RESULTS
A. Description of Datasets

All images and metadata we used in our experiments were
retrieved from the Snapshot Serengeti project data of season 1-8.
The whole set contains about 1.9 million subjects (triggered camera
trap shots of one or three pictures). We describe selected subsets
and additional annotations in the following sections.

Animal Detection: In order to train and evaluate object detectors one
usually needs strongly annotated data, i.e. tight bounding regions
around each object instance. We therefore created a Zooniverse
project [15] where 3234 volunteers drew rectangles and classified
the animal’s level of occlusion. Since this was the first experiment
of this kind of labeling and because of the huge effort it requires,
we restricted ourselves to the following six most common species in
the Snapshot Serengeti dataset: elephant, grant gazelle, thomson’s
gazelle, giraffe, ostrich, and zebra. Overall 108.298 classifications
had been provided for 10.000 images. Since multiple volunteers
provided metadata for a single image we needed to cleanup the
annotations, in particular the bounding box coordinates. We did a
non-maximum suppression for the rectangle regions and used the
most common agreement among users for metadata. Yet, in order to
ensure a clean final dataset we manually checked each image again
and removed wrong bounding regions. Furthermore, in addition to
these images, we annotated data ourselves using a custom annotation
tool. Figure 1 shows example images for all six species in the
dataset. Poor illumination, occlusion, complex body poses, animals
too close or too far away from the camera, and unbalanced data
place high demands on automatic object detectors. Moreover, we
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included two species which are hard even for humans to distinguish:
Thomson’s gazelles and Grant gazelles. In summary we gathered
17585 images containing 33437 annotated boxes. We randomly split
the dataset such that approximately 80% of all images were used for
training and 20% were held out for testing and evaluation. However,
it has to be taken into account that camera traps often shoot a short
sequence of images when triggered (usually three pictures). In order
to warrant a fair evaluation we ensured that near duplicates, i.e.
images taken at a single event, are not split among training and
test set. Additionally, we randomly hold out 2000 images from the
training set for validation. We plan to publish our dataset in order
to stimulate further research of this important topic.

For camera-trap imagery it is almost guaranteed to have drastic data
balancing problems. This issue can be a challenge for automatic
classification procedures since an unbalanced dataset might draw
machine learning algorithms towards the classes with the most
samples. However, we chose to keep this inequality in our dataset
since it reflects the distribution in real-world conditions.

Animal Counting: The annotators of the Snapshot Serengeti
project are not only asked to classify the species but also to
count the number of animals in each image. Up to ten animals
are explicitly annotated. For more then ten individuals within a
single image just two ranges are given: From 11 to 50 and 50+.
In addition to localizing animals we want to use the detector
results to count the number of animals and compare the results
to human annotations. As shown in [4], this information can help
to pre-filter images before presented to the annotators in order to
increase session length and annotator engagement. It can also be
used as initial annotation result and thereby reduce the number of
human annotations until consensus for a subject is reached. In our
experiments we concentrated on images with up to 5 animals for
two reasons: First, for the six animal species of interest, this covers
over 86% of the total pictures in the database. Secondly, for some
species it is hard to get images with more than five animals in the
database, e.g. for ostriches or giraffes. We applied the task of animal
counting to two sets, a balanced and an unbalanced dataset. We
crawled the MongoDB database of the Snapshot Serengeti project,
searching for images containing one of the six animal species of
interest. We restricted ourselves to images that had been labeled as
finished with consensus and where at least ten people agreed on
their decision. For the balanced dataset we chose pictures where the
number of images are nearly equally distributed over the number of
animals in a picture. The balanced dataset consists of 15660 images.
Note, however, that for some species it was hard to find images that
contain lots of animals (e.g. ostrich) while for other species (e.g.
zebra) most pictures contain flocks of animals.

Species Number of individuals in image
‘ H balanced (b)/ unbalanced (u)
1 2 3 4 5

Elephant b 146 146 146 146 146

u 3607 1138 | 541 276 146
Grant gazelle b 130 130 130 74 46

u 994 239 130 74 46
Thomson’s gazelle | b 1120 1120 | 1120 | 1120 | 1120

u 8962 | 4444 | 2588 | 1677 | 1120
Giraffe b 142 142 142 12 17

u 4310 533 142 42 17
Ostrich b 121 5 5 1 0

u 121 5 5 1 0
Zebra b 1473 1589 | 1589 | 1749 | 1803

u 13655 | 7128 | 4611 | 2811 | 1803

TABLE I: Number of pictures in the balanced and unbalanced dataset.

We also created an unbalanced dataset which better reflects the
likelihoods of the number of animals per species per image as
captured over 8 seasons of the Snapshot Serengeti project. In total
the entire unbalanced dataset contains 61166 images. Details for
both datasets can be found in Table I.
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(a) Elephant (b) Grant gazelle

(c) Thomson’s gazelle
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(d) Giraffe (e) Ostrich (f) Zebra

Fig. 1: Example images of our dataset consisting of six common serengeti species.

In both, the balanced and the unbalanced dataset, we kept the
distribution among the 6 species according to their distribution in
the whole Zooniverse database. We also ensured that none of those
images had been used for training.

We furthermore created a set of 300 empty images to evaluate
system’s capability to distinguish empty images from images which
contain animals.

B. Experimental Setup

In order to detect and classify different animal species in real-world
footage, we adapt, re-train, and combine two of the best performing
state-of-the art object detectors: YOLOV2 [5] and SSD [6].

For YOLOV2 we employ the freely available Tensorflow implemen-
tation of [16]. To prevent overfitting, we did not train from scratch
but fine-tuned our network from an existing checkpoint which was
trained on the Microsoft Common Objects in Context (MS COCO)
dataset [17]. The output layer of YOLOV2 was modified to deal with
our six classes instead of the 80 object categories of the MS COCO
dataset. The finetuning process was done running backpropagation
using the RMSprop optimizer [18] with its default parameters. We
used a learning rate of le—>5, a batch size of 16 and trained for
70 epochs. Apart from that we left all other hyperparameters as
recommended by the authors. As input dimension we chose 608 x 608
since according to [5] this configuration achieved the best results on
the MS COCO dataset at a reasonable processing time.

For SSD we used the Tensorflow re-implementation of the origi-
nal Caffe code by [19]. In particular we utilized the VGG-based
CNN network architecture [20] of SSD with an input dimension
of 300 x 300. Again, we first modfied the output layer of SSD to
handle the six species in our dataset and then finetuned from an
existing checkpoint provided by the authors. The original SSD object
detection architecture was trained on both the PASCAL VOC 2007
and 2012 training set [21] as well as the MS COCO dataset [17]. As
recommended by [19], we used ADAM [22] as optimizer. We started
with a learning rate of 0.001 and applied an exponential learning rate
decay factor of 0.94. Additionally, we applied a weight decay factor
of 0.0005. We trained with a batch size of 32 for approximately 500
epochs.

In order to prevent both object detectors from overfitting we applied
various data augmentation techniques. After cropping the annotated
ground truth region we horizontally flipped the input image and
randomly distorted brightness, saturation, hue and contrast of each
channel. To address the fact that often camera traps are not perfectly
horizontal, we additionally applied random rotations of +10°. Fur-
thermore, to enhance the systems robustness against truncation of
animals we randomly cropped each ground-truth bounding box such
that at least % of the original image region is preserved.

In order to set the detection threshold of both object detectors we first
trained both networks using the paradigm explained above. We then
applied both detectors on a validation set consisting of 2000 images
which were neither used for testing nor training. We then analyzed the
resulting ROC-curves by varying the detection threshold of YOLOv2
as well as SSD and finally picked the thresholds which maximized
the Fi-score of the respective detector. By following this guideline
we obtained a detection threshold of 0.391 and 0.269 for YOLOv2
and SSD, respectively. We kept these hyperparameters constant for
all experiments conducted in this paper.
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As we will show and analyze in the subsequent section, both object
detectors have their strengths and weaknesses. Thus, it makes sense
to combine their results to increase robustness and accuracy of the
final system. In order to fuse the detections of YOLOv2 and SSD
we implemented and applied a method known as Dynamic Belief
Fusion proposed by Lee et al. in [23] which dynamically assigns
probabilities to detection hypothesis based on precision-recall-curves
calculated on a validation set for every species. A joint probability
assignment of each detection by YOLOvV2 and SSD is subsequently
determined by the Dempster-Shafer combination rule [24].

C. Results

Animal Detection: After training and determination of the

hyperparameters of both object detectors we conducted several
experiments which we will describe in this section. As proposed in
the guidelines for PASCAL VOC [21], a widely used evaluation
measure to estimate the performance of object detectors is Mean
Average Precision (mAP), where a true positive detection is
registered for any detector hypothesis with an Intersection over
Union (IoU) of at least 0.5. However, since our dataset is highly
unbalanced, we report performance statistics using the normalized
version of mAP as proposed in [25]. Furthermore, to better
understand the performance and drawbacks of YOLOv2 and SSD
in more detail, it is important to evaluate the detector’s sensitivity
to different types of object characteristics. In this paper we are
especially interested in the following criteria: the degree of occlusion
(occ), truncation (trn), object size (size), and aspect ratio (asp). For
evaluation of these object characteristics we utilized the detection
analysis tool of [25].
Secondly, we thoroughly analyze false positive detections of both
detectors in order to be able to compare their main drawbacks.
False positive detections can be divided into four main categories:
Localization errors (loc) occur when an object of the target class
is detected with a misaligned box. Confusion with similar objects
(sim) happens when an object was correctly detected but confused
with a similar object category. Note that for our six animal species
we only consider Grant gazelles and Thomson’s gazelles to be
similar. Confusion with other objects (oth) on the other hand
describe false positive detections that have an IoU of least a 0.1
with a non similar object category. All remaining false positive
detections are categorized as confusion with background (bg).

Figure 2 shows the average normalized precision (AP,) as
well as the impact and sensitivity of the four object characteristics
for YOLOV2 (a) and SSD (b). The AP, of SSD with 0.67 is
significantly higher than for YOLOv2 with 0.55. However, it is
obvious that SSD is more sensitive to the size of an object, i.e. SSD
is able to detect large objects better than YOLOvV2 while on the
other hand YOLOV?2 is able to detect small objects better than SSD.
This observation led us to the conclusion that combining the object
hypotheses of both detectors should enhance the performance of the
overall system.

Table II summarizes the results of both detectors as well as the
proposed combination scheme for each animal class in the dataset.
It can be seen that for every single species in our dataset the
combination of both detectors surpasses the results of each detector
alone. Table III shows the distribution of the top false-positive
detections for each species.
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Fig. 2: Summary of sensitivity and impact of object characteristics of (a) YOLOV2 and (b) SSD.

AP, YOLOvV2 | SSD | Combination
Elephant 0.55 0.67 0.70
Grant gazelle 0.53 0.63 0.70
Thomson’s gazelle 0.38 0.58 0.64
Giraffe 0.70 0.78 0.84
Ostrich 0.64 0.66 0.75
Zebra 0.48 0.67 0.74

[ All [ 055 [ 067 ] 0.73 ]

TABLE II: Detection results of YOLOv2 and SSD as well as the
combination of both detectors.

False Positives loc sim oth bg
Elephant 80% - 6% 14%
Grant gazelle 38% 37% 7% 18%
Thomson’s gazelle 57% 26% - 17%
Giraffe 82.06% - 15.38% | 2.56%
Ostrich 12.5% - 25% 62.5%
Zebra 54% - 7% 39%

TABLE III: Detection results of YOLOv2 and SSD as well as the
combination of both detectors.

As expected, a significant amount of false positive detections for
Grant gazelle and Thomson’s gazelle are caused by confusion with
one another. Thus, depending on the usecase it might be beneficial to
combine both species into a single class. Interestingly, for elephant
and giraffe the amount of false-positive detections due to localization
error is extremely high compared to the other classes. This is due
to the fact that elephants often tend to be very close to the camera
and are therefore often truncated or occluded by conspecifics.
Thus, although the detector is able to detect parts of the animal it
often misses other parts of the same animal. For giraffes on the
other hand, the ground-truth regions contains a significant amount
of background due to thin limbs and neck. Thus, apparently the
detector is able to detect the main body of giraffes but often misses
head and limbs which in turn leads to a IoU < 0.5. Figure 3 shows
typical false-potitive detections for both classes.

Animal Counting: As described in the previous section the
combination of SSD and YOLOV2 achieves the best detection
results. We therefore use this combined detector to find out how
good it performs at the task of animal counting in the balanced and
unbalanced datasets. We count an image as correctly classified, if
the number of detected animals matches the number of individuals
annotated by the crowd. As expected, the animal count accuracy
drops with the number of animals present in the image as shown for
the balanced data set in Fig 4a. This basically means, that in about
45% of the Snapshot Serengeti database we can achieve a rate of
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(a) Elephant

(b) Giraffe

Fig. 3: Typical Examples of top-ranked false-positive detections for
classes Elephant and Giraffe.

correctly counted animals of 82%. In order to give a better intuition
on how reliable the animal counting works we plotted Fig. 4b. It
shows the count accuracy for sets of images with increasing number
of animals (i.e. images containing one, images containing one and
two animals, etc.) for both, the balanced dataset and the unbalanced,
more realistic, dataset, respectively. In addition, the percentage of
overall pictures from the Snaphot Serengeti database that would be
covered by the respective achieved accuracy is shown. For instance,
for 75% of images that contain animals in the Serengeti database
(1-3) a 70% (realistic unbalanced distribution) accuracy can be
reached.

For the task of blank image detection (about 70% of the whole
Serengeti database) the combined detector achieves results of 92%
accuracy.

IV. CONCLUSION AND FUTURE WORK

In this paper we successfully applied state-of-the-art deep-learning
based object detectors to the field of automatic animal detection and
counting in camera trap images. For that purpose we first created
a ground-truth annotation task at the citizen science platform Zooni-
verse and then re-configured and re-trained two of the best performing
object detectors, YOLOV2 [5] and SSD [6]. We thoroughly evaluated
both algorithms on our dataset and found that both object detectors
make different type of errors. Thus, combining the results of both
detectors lead to a more robust and accurate detector. In contrast
to previous work in the field of automatic animal monitoring, our
approach is not only able to classify the main species present in visual
footage but is also capable of localizing animals, classifying them
and consequently count the number of animals in an image which is
an important information for biologist, ecologists and gamekeepers.
Thus, our approach in combination with previous work in the field
of automatic visual animal biometrics has the potential to contribute
significantly to wildlife research and ecological science in general.
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Fig. 4: Plots of the animal count accuracy for the balanced as well
as the unbalanced dataset.

Future work comprises application of more object detectors as well
as the extension of our dataset by including more species. However,
manually generating ground-truth information used for training by
annotating thousands of images for each species can not only be
tedious and time consuming but also error prone and expensive. Thus,
approaches for weakly supervised learning in the context of automatic
object detection such as the works by Teh et al. [26] or Li et al.
[27] might be worth investigating in the near future.
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