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Abstract—In this paper, elevation and azimuth estimation
with uniform rectangular array (URA) is addressed. Since the
temporal samples received by the URA could be written into
a tensorial form, we introduce the multilinear projection for
developing a direction-of-arrival (DOA) estimator. In the noiseless
condition, the multilinear projector is orthogonal to the steering
matrix of the URA. Thus the proposed DOA estimator is designed
to find minimal points of the inner product of the steering vector
and the multilinear projector. Based on the multilinear algebraic
framework, the proposed approach provides a better subspace
estimate than that of the matrix-based subspace. Simulation
results are provided to demonstrate the effectiveness of the
proposed method.

Index Terms—Array signal processing, direction-of-arrival
estimation, multilinear algebra, tensor decomposition, uniform
rectangular array.

I. INTRODUCTION

The topic of direction-of-arrival (DOA) estimation with
uniform rectangular array (URA) has been widely investigated
and applied in various fields such as communication, radar,
sonar, etc. As one typical kind of planar arrays, URA could be
deployed to estimate 2-D DOA, i.e., elevation and azimuth [1],
[2]. Several DOA estimation methods, e.g., MUSIC [3] and
ESPRIT, are based on the subspace estimation of the received
samples. The subspace-based methods have shown their super-
resolution ability and could achieve high DOA estimation
accuracy. It is straightforward that the more accurate subspace
we could obtain from the samples, the better DOA estimation
performance we could expect.

Recently, a class of tensor-based methods have been in-
troduced into the field of DOA estimation problem since the
multidimensional array signal processing could be concluded
in the multilinear algebraic framework. Several multidimen-
sional array structures such as bistatic MIMO structure [4], [5]
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and URA have the potential to be constructed into a tensorial
form. Each dimension of the tensor corresponds to a dimension
of the multidimensional array. Then the higher-order singular
value decomposition (HOSVD) which represents an extension
of matrix-based SVD is used to calculate the tensor-based
signal subspace [6]- [9]. The tensor-based signal subspace
has shown to be a better estimate than that of the matrix-
based ones under some mild conditions. A so-called tensor-
based MUSIC method combines a set of noise subspaces
which are orthogonal to the signal subspaces associated with
each dimension [10], [11]. However, it may produces several
false peaks which is caused by misparing of elevation and
azimuth associated with different signals when searching over
the whole spatial region.

In this paper, we propose a multilinear projection (MP)
approach based DOA estimation method with URA. The MP
approach is first proposed in [12] in the literature of computer
vision and then extended to interference suppression [13].
Its main strategy aims to construct a multilinear projection
tensor which is the orthogonal complement of tensor-based
signal subspace. We follow this idea to establish a MUSIC-like
DOA estimation approach which estimates all DOAs through
searching over the spatial region to find the local minimal
points of the inner product of the steering and the MP-based
tensor. The proposed approach achieves auto-paring of the
elevation and azimuth and has a superior DOA estimation
performance over the matrix-based MUSIC method.

II. SIGNAL MODEL

Consider an M x N URA equipped with half-wavelength
spaced sensors placed on a X-Y plane. Assume there are @)
narrowband uncorrelated signals impinging on this array. The
sample of the (m, n)th sensor in the array at time ¢ is expressed
as

Q
xmn(t) = Z Sq (t)amn(eqa ¢q) + nmn(t) ()
q=1

where m=1,2,...,M, n=1,2,...,N, (04, ¢) stands for
the elevation and azimuth of the gth signal, s,(¢) denotes the

1247



2018 26th European Signal Processing Conference (EUSIPCO)

gth signal sampled at time ¢, n,,,(t) represents the complex
white Gaussian noise, respectively. The a,,, stands for the
(m,n)th sensor and its spatial phase factor for the gth signal
is given by

a'mn(oqad)q) é ej(mfl)wsin(iq Cosd)qej(nfl)wsin(iq Sian)q' )

Then the sample of the whole array at time ¢ is written as

A

x(t) =[z11(t), ..., xin(E)y .-y xp(t), ...y xMN(t)]T 3)
Q
=D 5q(t)(ay(0g; ¢q) ® az (04, ¢q)) + n(t) “)
q=1
=As(t) + n(t) )

where ()7, ® are used for denoting transpose, Kronecker
product, and A € CMN*® represents the steering matrix,
given as

A
A= [aywh ¢1) ®ax(917 ¢1)7 e 7ay(9Qa ¢Q) ®a$(0Qa d)Q)]
(6)
and the steering vectors of Y- and X-axis are respectively
defined as

a, (04, ¢q)
a;(0q, dq)

For a total of T' samples, the received data of the URA is

1>

[17...,ej(]\/[71)7rsin04 coszi)q]T (7

>

[17.'.7ej(M71)7rsin0qcos¢q]T. (8)

X =AS+N 9)

Several subspace-based approaches which operate on (9) are
proposed to solve the DOA estimation problem. Performing
SVD to X, we obtain the matrix-based subspace
- - X, 0 A ~ . H

X=[U, U] [ 0 EJ Vs V.| . (10)
where (-) denotes the Hermitian transpose, U, and U,
represent the estimated signal subspace and noise subspace,
respectively. Also, XA]S is a diagonal matrix. If (9) is noiseless,
the steering matrix (6) has the same range as the signal
subspace and is orthogonal to the noise subspace. Therefore,
the well-known matrix-based MUSIC method is expressed as

argrgi(ﬁn”a(&(é)ﬂnﬂg. (1)

where || - ||2 stands for the ¢> norm. After searching over the
spatial region, (11) yields a few minimal values. Thus we could
obtain the estimates of elevation and azimuth.

III. TENSOR FORMULATION

A. Tensor Notations

Following the notation in [6], we define a 7-mode unfolding
of a tensor A € Ch>*f2xxIn along as A and the
concatenation of two tensors along the r-mode as B LI, C.
By setting i,, = k, we obtain a sub-tensor denoted by A; _j.
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Definition 1 (The r-mode tensor-matrix product): The 7-
mode product of a tensor A € Cl1*12X*Ir and a matrix
B € C’/~*Ir along the r mode is given by

C2Ax,B (12)

I,
Cityig,eosir—1,0ryirg 1, iR § a'ilvi27--*7inj7‘7ir
=1

where C € (Cll><12><~~~><17~,1 X JpXTrgq ><~~><IR.

Definition 2 (The generalized r-mode product): The gen-
eralized r-mode product between two R-order tensors A €
Chixlzx-xIr and B € C1*72>%xJr jg defined as

C2Ax, B (13)

(Cll><12><---><Ir,1><J,,,><I,~+1><---><IR and Ir —

where C €
Ji...Jr—1Jrg1 ... Jg. Its matrix form is expressed as C(,) =
Br)Agr)-

B. Tensor Modeling

We could formulate a total of T received samples of the
URA into a tensorial form, which enables the HOSVD to
achieve a better signal subspace estimate of the tensor data.
Note that the DOA estimation problem with URA could be
regarded as an special type of two-dimensional harmonic
retrieval problem, which its tensorial formulation has been
well studied in [6]. Firstly, we fold the ¢th sample (5) into
a M x N matrix, yielding

Q
X(t) = Z sq(t)(ay (0, ¢q) © az(fg, ¢)) + N(t)  (14)
qg=1

where o denotes the outer product, and N(¢) stands for the
matrix form of the noise item in (5). Furthermore, (14) could
be written into a form which shows a relationship with the
tensor as

X(t) = A x3s(t) + N(t) (15)
where A € CM*NXQ denotes a three-way steering tensor.
The g-th subtensor of A,,—, indicates the steering tensor of
the gth signal and is expressed as

Ay (04, 94) = ay(04, ¢g) 0 as (04, ¢q)

Then, for a total of 7" samples, the received tensor as a
concatenation of each received matrix at time ¢t = 1,2,...,7T,
X € CM*NXT ig defined as

(16)

X =X(1)Us X(2)Us - - Ug X(T). 17)
Then we construct a tensorial form of (9). Each dimension
of X stands for the Y-axis and X-axis of the URA and
the temporal dimensions, respectively. Note that r-mode of
a tensor has the same meaning with the r-dimension of an
array. The HOSVD represents a lower rank approximation of a
tensor. A straight forward but not optimal solution of HOSVD
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is achieved by alternatively performing SVD to the r-mode
matrix unfolding of X as

s o

X(’r) = [ﬁ[rs] g Ln]} 0 27[?]

MVW Vi as)

where Ij[ls] € CMxQ ﬂ[zs} € CN*Q represent the r-mode
signal subspaces and U™ e cMx(M-@) gl ¢ cVx(V-@)
stands for the r-mode noise subspaces, respectively. Thus, the
corresponding tensor-based signal subspace calculated through
HOSVD is given as [6]

~ [s] N

7™ = g" ol ., OF) (19)

where ‘f/'[s] € CO*®@*Q denotes the core tensor and is taken
from the upper-left of G. Similar to the matrix case, we have
the following relationship

ANLA{M x3Q

where Q € C?*? denotes a full-rank matrix, which indicates

(20)

A and I;I[S] share the same range. According to [6], the matrix-
based and tensor-based signal subspace has the following
relationship
< [s] . PN
UG = (T1 @ T2)Us @1)
where T; = IAJES]IAJES]’H,@' 1,2. Since when Q <
max{M, N}, the tensor-based signal subspace is superior to
the matrix-based one.
A tensor-based MUSIC DOA estimation method with URA
combines a set of r-mode noise subspaces as [10]

A~ H ~ H
min || A6, ¢) x1 OF s, U712, (22)

This tensor-based MUSIC method may produces more DOA
candidates than the actual number of signals since any combi-
nation of the elevation and azimuth associated with different
signals will lead to a local minimal of (22).

C. MP Based DOA Estimation Approach

In this subsection, we propose a MP based MUSIC-like ap-
proach using the tensor-based signal subspace and multilinear
algebra. First of all, we define the r-mode pseudo-inverse of a
tensor as AT:) = (A(»)', and t denotes the pseudo-inverse.

Property 5: The r-mode pseudo-inverse of a tensor satisfies
[12]:

(A %, AT") Xr A=A

Property 2: the r-mode identity tensor has the following
property :

(23)

I"x, A=A

where Z" is the r-mode identity tensor. Then the relationship
between a r-mode identity tensor and an identity matrix is
revealed as I?n) =I;,I, =05 ...0,_11.41...1p where Lis
an identity matrix. Using properties 1 and 2, we could define
the MP through orthogonal complement of the tensor-based
signal subspace as

(24)

M= a s @y, (25)
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Taking the generalized R-mode product between the MP and
tensor-based signal subspace, we have

U st =u" — ™ @y a0 6
where O is an all-zero tensor.

Thus the proposed MP approach is therefore given as
~ [n]

arg pin la(0, ) itV 3

3) 27)

Comparing with the matrix-based noise subspace, the proposed
MP has the following relationship

- [n] o L8] o L8l

GGy = T — (U 15 UG (28)
The proposed DOA estimator (27) will have a better DOA
estimation performance than that of the matrix-based MUSIC
method since the tensor-based signal subspace are more accu-
rate.

(]

D. Computational complexity

The main computational complexity is mainly consist of
two parts: the HOSVD and grid searching procedure. Because
the calculation of the MP is needed only once during each
time and demands much less computational complexity than
the HOSVD, we neglect it for simplicity. If we respec-
tively have G, and G, grids over elevation and azimuth,
then the total computational complexity is O(4kQMNT) +
O(G.G,QMN) where k depends on the method we use to
perform SVD.

IV. SIMULATIONS

In this part, two numerical examples are given to demon-
strate the effectiveness of the proposed MP DOA estimation
approach. In addition, the signal-to-noise ratio (SNR) is de-
fined as 10log,,(||AS||Z/|IN||Z) where || - ||r stands for the
Frobenius norm. Throughout all the simulations, the size of
URA is set as M = 8, N = 7. The root-mean-square-errors
(RMSE) of elevation and azimuth are respectively defined as

. 1
RMSE, 2 E{Q ;(94 - aq)2} (29)
A
RMSE,, £ E{Q > (6g - ¢q)2}. (30)
g=1

where E{-} denotes the mathematical expectation.

In the first example, we compare the spatial spectrums of the
matrix-based MUSIC, tensor-based MUSIC and the proposed
methods. The DOAs of two signals are set as § = [43° 26°]
and ¢ = [15° 30°]. Moreover, we set T' = 6 and SNR = 5dB.
In Fig. 1, it is observed that all DOA estimation methods
could distinguish these two signals. The spatial spectrum of
MP approach has sharper peaks than that of the matrix-
based method. However, there are several false peaks in Fig.
1(a), which degrades the DOA estimation performance of
the tensor-based method. Also, the average CPU time of the
proposed MP based method and matrix-based MUSIC method
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Fig. 1.
Q@ = 10, SNR = 5dB, 6 = [43° 26°], ¢ = [15° 30°]
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Fig. 2. RMSE performance of DOA estimation versus SNR, M = 8, N =7,
Q =6, 0 = [25° 35°], ¢ = [15° 25°].

are 0.065 s and 0.061 s with a search grid 0.01° on elevation
and azimuth (on a laptop equipped with a Core i3 3.7 GHz
processor, 8GB RAM and Matlab R2016b version).

In the second example, we evaluate the elevation and
azimuth estimation performance of all these three methods
versus SNR with a fixed number of samples 7' = 6 . Note
that the 7" is much smaller than the size of the URA. The
DOAs of two signals are set as 6 = [25° 35°], ¢ = [15° 25°],
respectively. Also, the deterministic CRB is provided as a
benchmark. In Fig. 2, the SNR is varied from 0dB to 30dB.
We observe that the elevation and azimuth estimation perfor-
mances of MP based approach outperform those of the matrix-
based and tensor-based MUSIC methods, particularly when
SNR< 17dB. The MP method has as almost the same DOA
estimation performance as that of the matrix-based MUSIC
and both of them are close to the CRB when SNR> 17dB.

1250



2018 26th European Signal Processing Conference (EUSIPCO)

V. CONCLUSION

In this paper, we propose a DOA estimation approach with
URA based on a multilinear projector. First, the received
data is formulated into a tensor and obtain its tensor-based
signal subspace. Then we utilizes multilinear projection to
build a subspace is orthogonal to the steering tensor. A
MP approach to DOA estimation is proposed following the
strategy of the well-known MUSIC method. In addition,
The computational complexity analysis of the MP method
is also provided. Simulation results are given to show that
the proposed DOA estimation method outperforms that of the
matrix-based method.
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