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Abstract—The phase retrieval from multi-frequency intensity
(power) observations is considered. The object to be recon-
structed is complex-valued. A novel algorithm is presented that
accomplishes both the object phase (absolute phase) retrieval
and denoising for Poissonian and Gaussian measurements. The
algorithm is derived from the maximum likelihood formulation
with Block Matching 3D (BM3D) sparsity priors. These priors
result in two filtering: one in the complex domain for complex-
valued multi-frequency object images and another one in the real
domain for the object absolute phase. The algorithm is iterative
with alternating projections between the object and measurement
variables. The simulation experiments are produced for Fourier
transform image formation and random phase modulations of the
object, then observations are random object diffraction patterns.
The simulation results demonstrate the success of the algorithm
for reconstruction of the complex phase objects with the high-
accuracy performance even for a high dynamic range of the
absolute phase and very noisy data.

I. INTRODUCTION

Phase retrieval is a problem concerning reconstruction of

the phase from intensity (power) measurements of complex-

valued variables. It is inherently ill-posed due to the lack of

the phase in observations. The fields of application are varying

from physics and engineering to medicine and biology.

We consider the problem of 2D imaging from the multi-

frequency observations. The multi-frequency complex-valued

object model is of the form

uo,λ = bo,λ exp(jμλϕ), λ ∈ Λ, (1)

where uo,λ∈ CN×N , ϕ is the object absolute phase in ra-
dians, μλ > 0 are dimensionless relative frequencies, and
Λ = [λo, λ1, ..., λnλ−1] is a set of periods (wavelengths) of the
multi-frequency observations. In what follows, the amplitude,

phase and other variables are functions of the argument x given
on a regular 2D grid, X ⊂ Z2.
In the model (1), μλ is a frequency depending scale para-

meter of the object phase, which establishes a link between

the absolute phase ϕ and the wrapped phase ψλ of uo,λ. The
wrapped phase is related with the true absolute phase ϕ as
μλϕ = ψλ+2πkλ, where kλ is an integer, ψλ ∈ [−π, π). The
link between the absolute and wrapped phase is installed as:

ψλ =W(μλϕ) ≡ mod(μλϕ+ π, 2π)− π,
where W(·) is the wrapping operator, which decomposes the
absolute phase μλϕ into two parts: the fractional part ψλ ∈
[π,−π) and the integer part defined as 2πkλ.
The frequencies, i.e. the phase factors μλ are given but

the phase ϕ and the amplitude bo,λ should be retrieved from

intensity observations which are for noiseless ys,λ and noisy
zs,λ cases have the form:

us,λ = Ps,λuo,λ, ys,λ=|us,λ|2, (2)

zs,λ = G{|us,λ|2}, λ ∈ Λ, s = 1, ..., S, (3)

where G{·} is a generator of random noisy observations, S is
a number of experiments.

The image formation operator Ps,λ, usually depending on
λ, is known. The observations are given for each λ ∈ Λ. If the
phases μλϕ are interferometric, i.e. μλϕ ∈ [π,−π), then the
problem becomes trivial as the estimates of μλϕ and bo,λ can
be found separately for each λ by one of the phase retrieval
algorithms. The problem becomes much more challenging,

when the phases μλϕ are non-interferometric, μλϕ /∈ [π,−π),
because the data processing produced independently for each

λ gives estimates only for wrapped phases ψλ. Aggregation of
these estimates in order to reconstruct the absolute phase ϕ is
a crucial issue of the multi-frequency phase retrieval problem.

A. Related works
For a single frequency, μλ = 1 and bo,λ = bo in (1),

the multi-frequency problem becomes the conventional phase

retrieval: to reconstruct the object uo∈ CN×N from noiseless

ys or noisy zs intensity observations. A flow of old and re-
cent publications concern various formulations and algorithms

for solution of this standard setup starting from the classic

Gerchberg-Saxton (GS) style algorithms (e.g. [1], [2]) based

on alternating projections between the complex-valued uo and
us. The review and analysis of the GS algorithms as well as
further developments can be seen in [3]-[5]. The variational

formulations of the phase retrieval have a stronger mathe-

matical background and go to solving optimization tasks [6],

[7]. The maximum likelihood approaches using the transform

domain phase/amplitude sparsity are proved to be effective for

noisy data. It is a base of the Sparse Phase Amplitude Retrieval

(SPAR) algorithms [8]-[11].

The multi-frequency phase retrieval is a much less studied

problem. The lower synthetic frequencies (beat-frequencies)

appear in the differences of the wrapped phases Δλ.λ′ =
W(μλϕ) − W(μλ′ϕ) = W((μλ − μλ′)ϕ). The problem
can be solved in the straightforward manner provided that

μλ − μλ′ is small and (μλ − μλ′)ϕ ∈ [π,−π), then ϕ can
be easily calculated from Δλ.λ′ . However, the noise level in
these synthetic frequency estimates grows proportionally to

1/(μλ − μλ′) [12]. The various forms of the synthetic fre-
quency techniques are proposed for multi-frequency scenarios

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2214



(e.g. [13], [14]). The 2D phase unwrapping algorithms, i.e.

absolute phase retrieval with simultaneous processing of multi-

frequency noisy complex-exponents, have been developed in

terms of the maximum likelihood formulation [15], [16]. The

Chinese Remainder Theorem provides a wide class of the

methods with a good theoretical background [17]. Reformula-

tion of these approaches to noisy data and for robust estimation

leads to the techniques similar to the maximum likelihood

methods [18], [19].

The algorithm presented in this paper can be treated as a

development of the SPAR algorithm proposed in [10]-[11]

for a single frequency phase retrieval and of the maximum

likelihood absolute phase reconstruction from multi-frequency

observations [16]. Another version of the SPAR algorithm for

multi-frequency observations is presented in [20], where a

different least square procedure is proposed for absolute phase

reconstruction, and modeling of image formation is based on

the angular spectrum wavefront propagation [21] instead of

the Fourier transform used in this paper.

B. Contribution of this paper
We present a novel multi-frequency phase retrieval algo-

rithm that accomplishes both phase unwrapping and denoising

from noisy intensity observations. The noise models account

for Poissonian and Gaussian distributions. The proposed algo-

rithm is iterative with alternating projections between object

and measurement variables. The algorithm is derived from the

maximum likelihood formulation with the Block Matching 3D

(BM3D) sparsity priors. These priors result in the two types

of filtering: in the complex domain for multi-frequency object

images and in the real domain for the object absolute phase

(object shape). One of the paramount issues of the algorithm is

the absolute phase reconstruction by aggregation of the object

multi-frequency estimates. This aggregation is achieved by the

least square solution including compensation of the invariant

phase-shifts in the λ-channel object estimates.
The simulation experiments are produced for Fourier trans-

form image formation with the random phase modulations at

the object plane. These observations are noisy random object

diffraction patterns. The results demonstrate the success of

the algorithm for reconstruction of the high complexity phase

objects with the precise performance even for very noisy

observations.

II. ALGORITHM DEVELOPMENT

A. Problem formulation
Reconstruction of uo,λ∈ CN×N from noisy {zs,λ} is chal-

lenging mainly due the periodic nature of the likelihood

function with respect to the phase ϕ and the non-linearity of
the observation model. Provided a stochastic noise model with

independent samples, the maximum likelihood leads to the

basic criterion L0 =
∑

λ∈Λ
∑S

s=1

∑
x l(zs,λ(x), |us,λ(x)|2),

where l(z, |u|2) denotes the minus log-likelihood of a can-
didate solution for uo,λ given through the observed true

intensities |u|2 and noisy outcome z. For the Poissonian
and Gaussian distributions we have, respectively, l(z, |u|2) =

|u|2χ − z log(|u|2χ), χ > 0 is the noise scaling parameter
[10] and l(z, |u|2) = 1

2σ2 ||u|2 − z|2, σ2 stands for the noise
variance.

We introduce the following criterion including the image

formation model Ps,λ for us,λ and the complex-valued expo-
nent modeling of the multi-frequency object uo,λ:

L(us,λ, uo,λ, bo, ϕ , δλ) =
∑

λ,s,x

l(zs,λ(x), |us,λ(x)|2) +

1

γ1

∑

λ,s

||us,λ − Ps,λuo,λ||22 + (4)

1

γ2

∑

λ

||bo.λ exp(j(μλϕ+ δλ))− uo,λ||22, (5)

where γ1, γ2 > 0 are parameters, and || · ||22 is the Frobenius
norm. The likelihood in (4) is penalized by the quadratic

residual function for correspondence of us,λ to uo,λ.

The estimates of μλϕ in (5) can be biased due to the fact that
the observations are not sensitive to invariant additive errors

(phase shifts) in ϕ. We model this bias by the parameters δλ
invariant with respect to x and additive to the phases μλϕ.

We say that the object complex exponents uo,λ are in-phase
(synchronized) if δλ = 0, for all λ ∈ Λ, and out-of-phase
otherwise. The phase shifts δλ should be compensated for a
proper estimation of the absolute phase ϕ.

The criterion L is minimized with respect to us,λ, uo,λ, bo,
ϕ as well as with respect to the phase-shifts δλ.

1) Minimization with respect to us,λ concerns the first two
summands in L. The problem is additive and can be

resolved separately for each x, s and λ. The correspond-
ing analytical solutions derived for the Poissonian and

Gaussian distributions can be seen in [10]. These solu-

tions optimal in the maximum likelihood sense define

the estimates of us,λ as functions of noisy observation
zs,λ and projections Psuo,λ of uo,λ on the sensor.

2) Minimization with respect to uo,λ goes to the first two
summands of the criterion. It is the quadratic problem. If

Ps,λ are orthonormal such that
∑

s P∗s,λPs,λ = I , where
I is the identity operator, and P∗s,λ is Hermitian adjoint
for Ps,λ, the solution is of the form

ûo,λ =

∑
s P∗s,λus,λ+γ1/γ2bo,λ exp(jμλϕ)

1 + γ1/γ2.
. (6)

3) Minimization on bo,λ, ϕ and δλ concerning the last
summand in L is a non-linear least square fitting of

the frequency dependent uo,λ. Minimization on ϕ is

an absolute phase estimation, i.e. the phase unwrapping

problem. The solution is composed from the following

two successive stages A and B.
(A) Phase synchronization. Let λ′ ∈ Λ be a reference
λ−channel. Define the estimates for the phase shift δλ
for (5) in the following way

δ̂λ =W(δ̂λ′ · μλ/μλ′ + δλ,λ′μλ), (7)
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where δ̂λ′ is a candidate value of unknown δλ′ and δλ,λ′

is a shift between the weighted wrapped phases of the

reference and λ-channels

δλ,λ′ = medianx(W(ψo,λ(x)/μλ − ψo,λ′(x)/μλ′)).
(8)

The estimates δ̂λ reduce the number of unknown phase
shifts δλ, λ ∈ Λ, to a single δ̂λ′ , i.e. to the phase-shift
in the reference channel. It was tested by Monte-Carlo

modeling that δλ,λ′ is a good estimate for δλ/μλ −
δλ′/μλ′ , then δ̂λ � δλ + (δ̂λ′ − δλ′)μλ/μλ′ . Inserting
these δ̂λ in (5) instead of δλ we arrive to

L1(bo,λ, ϕ, δλ) = (9)
∑

λ

||bo.λ exp(j(μλ(ϕ+Δϕ))−

|uo,λ| exp(j(ψo,λ − δλ))||22, Δϕ = (δ̂λ′ − δλ′)/μλ′ .
Thus, the accurate synchronization of the exponents

exp(j(μλ(ϕ + Δϕ)) is achieved in (9) as a result of
corrections of the wrapped phases ψo,λ by δ̂λ in (5). If
Δϕ �= 0 the phase ϕ is estimated within an invariant
Δϕ. It is not imposing any restrictions as by default the
phase ϕ in the phase-less measurements of the phase
retrieval can be estimated within an arbitrary invariant

shift only.

(B) Absolute phase retrieval (APR). In order to simplify
the presentation assume that the complex exponents of

uo,λ are perfectly in phase, i.e. Δϕ = 0, and bo.λ =
|uo,λ|, then the absolute phase is reconstructed as

ϕ̂ = (10)

argmin
ϕ

∑

λ

|uo,λ|2[1− cos(μλ · ϕ− ψ̂o,λ)],

where ψ̂o,λ− δ̂λ is denoted by ψ̂o,λ, i.e. δλ unknown in
(5) are replaced by the estimates δ̂λ.
For calculation of ϕ̂ we use the approach proposed

in [16]. Due to the periodicity of the cosines in (10),

μλ · ϕ = ψ̂o,λ + 2πkλ, where kλ are integers. By

summation over λ we obtain ϕ =

∑
λ(ψ̂o,λ + 2πkλ)∑

λ μλ
and substituting this ϕ into (10) we arrive to

ϕ̂ = arg min
k∈[0, Q)

∑

λ

|uo,λ|2[1− (11)

cos(
μλ(

∑
λ ψ̂o,λ + 2πk)∑

λ μλ
− ψ̂o,λ)], k =

∑

λ

kλ,

b̂o,λ = |uo,λ|. (12)

It shows that the multivariable optimization on kλ is
reduced to the scalar optimization on the integer k. If
μλ = pλ/qλ, where (pλ, qλ) are coprime integer, then
the criterion in (11) is a periodic function of k with the
synthetic period Q equal to the nominator of

∑
λ μλ.

It follows that the maximal range of the absolute ϕ
which can be reconstructed in this approach is restricted

by 2π(nΛ + Q)/
∑

λ μλ, where nΛ is a number of the
frequencies in Λ. Rational approximations are used for
μλ in these calculations if μλ are not rational.

B. Algorithm’s implementation

Using the above solutions, the iterative algorithm is devel-

oped of the structure shown in Table I. The initialization by

the complex-valued u1o,λ is obtained from the observations

{zs,λ} by the SPAR algorithm [10] separately for each λ. The
main iterations start from the forward propagation (Step 1)

and follows by the amplitude update for uts,λ at Step 2. The
operator Φ1 for this update is obtained by minimization of L
on us,λ. It can be seen in [10] for Poissonian and Gaussian
noise models. The back propagation in Step 3, the operator

Φ2, is defined by (6). The absolute phase reconstruction from
the wrapped phases of ut+1o,λ is produced in Step 4 by the

ARP algorithm as defined by the solution (11)-(12). The

obtained amplitude and phase update ut+1o,λ at Step 5. The

number of iterations is fixed in this implementation of the

algorithm. The steps 3 and 4 are completed by the BM3D

filtering. In Step 3, it is the filtering of complex-valued u
t+1/2
o,λ

produced separately for the wrapped phase and amplitude of

u
t+1/2
o,λ . In Step 4 this filtering is applied to the absolute phase

ϕt+1/2. These BM3D filters are derived for the considered

phase retrieval problem from the group-wise sparsity priors

for the filtered variables. This technique is based on the

Nash equilibrium formulation for the phase retrieval instead of

the more conventional constrained optimization with a single

criterion function. We do not show this derivation as it is quite

similar to the derivation presented in [10].

TABLE I
MULTI-FREQUENCY ABSOLUTE PHASE RETRIEVAL (MF-APR)

ALGORITHM

Input: {zs,λ}, s = 1, ..., S, λ ∈ Λ,
Initialization: u1o,λ, λ ∈ Λ
Main iterations: t = 1, 2, ..., T

1. Forward propagation:
u
t+1/2
s,λ = Ps,λuto,λ, s = 1, ..., S, λ ∈ Λ;

2. Noise suppression and update of uts,λ:
uts,λ = Φ1(u

t+1/2
s,λ , zs,λ);

3. Backward propagation and filtering:
u
t+1/2
o,λ = Φ2(uts), u

t
o,λ = BM3D(u

t+1/2
o,λ );

4. Absolute phase retrieval and filtering:
{ϕt+1/2, bt+1o.λ } = APR(uto,λ),
ϕt+1 = BM3D(ϕt+1/2);

5. Object update:
ut+1o,λ = bt+1o,λ exp(jϕ

t+1μλ), λ ∈ Λ;
Output: ϕT+1, bT+1o,λ , uT+1o,λ .

In our experiments the parameters of the algorithm are fixed

for all tests. The parameters defining the iterations of the

algorithm are as follows: γ1 = 1/χ, where χ is the parameter
of the Poissonian distribution, γ1/γ2 = 0.2. The parameters of
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BM3D filters can be seen in [10]. The MATLAB demo-codes

of the MF-APR algorithm are publicly available 1.

III. NUMERICAL EXPERIMENTS

In numerical experiments we model a lensless optical sys-

tem where a thin flat transparent phase object is illuminated

by monochromatic three color RGB (red-green-blue) coherent

light beams from lasers or LEDs. The wavefronts just behind

the object are uo,λ = bo,λ exp(j2π · h · (nλ − 1)/λ), where
h ≥ 0 is an object thickness (height, shape, profile), λ is
the wavelength, and nλ is a refractive index of the object
material. We recalculate the wavelengths including the effect

of the refractive index as λ → λ/(nλ − 1) ∈ Λ, Λ = [500,
600, 700]×10−9 m. Then, the formula 2π · h/λ defines the
phase delay in propagation of the coherent light-beam through

the object. In notation used in (1), the relative frequencies

are μλ = λ′/λ, where λ′ is the reference wavelength, and
ϕ = 2πh/λ′ is the reference absolute phase in radians.
The propagation of the wavefronts to the sensor is given

by the Fourier transform [21]. The intensities of the light

beam impinging on the sensor parallel to the object plane are

calculated as zo,λ=G{|F{Ms ◦ uo,λ}|2}, s = 1, ..., S, λ ∈ Λ.
Here Ms are the modulation phase-masks inserted next to

the object, ′◦′ stands for the pixel-wise multiplication of the
object and phase-mask transition functions. The phase-masks

Ms enable strong diffraction of the wavefield propagation. It

is introduced in order to achieve the phase diversity sufficient

for improved reconstruction of the complex-valued object.

Similar to [22], we use the four phase values [0, π/2, π,
3/2π] prescribed to the pixels of the modulation phase-masks
randomly.

The accuracy of the object reconstruction is characterized

by Relative Root-Mean-Square Error (RRMSE) calculated
as RMSE divided by the root of the mean square power of

the signal. In these criteria the bias of the phase estimate is

corrected by the mean value of the error between the estimate

and the true value.

We show the results obtained for Poissonian observa-

tions and very noisy data. The noisiness of observations

is characterized by Signal-to-Noise Ratio (SNR) SNR =
10 log10(χ

2
∑

s,λ ||us,λ||22/
∑

s,λ ||χ·|us,λ|2−zs,λ||22) dB and
by the mean number of photons per sensor pixel, Nphoton.
The illustrating results are presented for two phase objects

with the invariant amplitude equal to 1: Gaussian (100× 100)
and U.S. Air Force (USAF) resolution target (612× 612).
For the given Λ and the reference wavelength λ′ = λ1

we have μ1 = 1, μ2 = 0.0833, μ3 = 0.7143. The rational
approximations for these μλ are μ1 = 1, μ2 = 5/6, μ3 =
5/7 and the sum

∑
λ μλ = 107/42. Thus, Q = 107 and the

upper bound for the range of ϕ is calculated as 2π(nΛ +
Q)/

∑
λ μλ � 272 rads. The number of experiments for each

wavelength is S = 6.
The peak-value of the Gaussian phase for the reference

wavelength is ϕ = 242 radians, close to the upper limit 272

1http://www.cs.tut.fi/sgn/imaging/sparse/

rads. To make the problem more difficult, we consider a very
noisy scenario SNR = 12.5 dB and Nphoton = 7.
The achieved phase reconstructions are shown in Fig.1 as

3D/2D images. The counterpart reconstructions presented in

Fig.1 are obtained by the SPAR algorithm applied to each

of the wavelength separately. These wrapped phase estimates

are unwrapped using the PUMA algorithm [23]. The proposed

algorithm produces a nearly perfect result with RRMSE =
0.00529, while the counterpart estimates are completely failed.
The ideal wrapped phase for the true Gaussian phase should

have a form of circular fringes. Instead of it in Fig.2, we

can see quite irregular structures which look like destroyed

by random errors. This disturbance is an aliasing effect due

to discretization (sampling) of the continuous Gaussian phase

with a low sampling rate, which does not satisfy the Nyquist–

Shannon conditions. This true wrapped phase is so complex

and so irregular that it cannot be unwrapped by any 2D

unwrapping algorithm. Nevertheless, the proposed MF-APR

algorithm is quite successful and resolves the problem even

for noisy data.

Fig. 1. Gaussian absolute phase reconstructions, 3D/2D images: first row,
first and third images are given by the proposed MF-APR algorithms, the
best RRMSE value; others are alternative reconstructions given by the SPAR
algorithm and unwrapped by the PUMA algorithm.

The phase reconstructions for the USAF test-object are

shown in Fig.3 as 3D/2D phase images for noisy observations
with SNR = 8.74 dB and Nphoton = 3.74. The proposed
algorithm demonstrates a quite accurate reconstruction with

RRMSE = 0.063. The counterparts produced as above for
each wavelength separately are failed.

Fig. 2. The 3D true absolute phase of the Gaussian phase object, and the
corresponding 2D wrapped phase, the wavelength λ′ = λ1.

The peak-value of the phase for this test with the reference

wavelength λ′ = λ1 is ϕ = 30 rads. It is not so high as
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is for the Gaussian phase image but the USAF test images

is discontinuous binary with noisy observations, what defines

the extreme complexity of the problem at hand.

The synthetic wavelength approach discussed in Section

I-A is not effective for the considered tests as the wrapped

phase differences are not small enough in order to (μλ −
μλ′)ϕ ∈ [π,−π). Thus, it cannot be a valuable alternative
to the proposed algorithm. For our experiments we use MAT-

LAB R2015b and the computer with the processor Intel(R)

Core(TM) i7-4800MQ@ 2.7 GHz. The complexity of the

algorithm is characterized by the computational time. For

100 × 100 and 612 × 612 images, the computation time is
3.3 and 14.6 sec. per iteration. The APR algorithm takes,

respectively, 0.2 sec. and 8.5 sec. of this time.

IV. CONCLUSION

The multi-frequency absolute phase retrieval from intensity

observations is considered. This paper introduces a variational

approach to object absolute phase and amplitude reconstruc-

tion from noisy intensity observations. The maximum likeli-

hood criterion used in the developed optimization approach

defines the intention to reach statistically optimal solutions.

The phase retrieval is an ill-possed inverse problem, where

the observation noise is amplified and transferred to estimates

of phase and amplitude. The sparsity developed for modeling

of varying variables is one of the key instruments for reg-

ularization of this inverse problem. The block-wise sparsity

implemented by BM3D filters is applied to amplitude/phase

of the wavefront complex-valued variables and the real-valued

object absolute phase. One of the key original elements of

the algorithm is the weighted least square solution for ag-

gregation of the multi-frequency estimates developed for both

the absolute phase reconstruction from the observed multi-

frequency wrapped phases and the phase-shifts compensation.

The effectiveness of the developed algorithm is demonstrated

by simulation experiments for the coded diffraction pattern

scenario and very noisy Poissonian observations. The MAT-

LAB demo-codes of the algorithm are publicly available.
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