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Abstract—A novel approach for proximity detection on mobile
handsets which does not require any additional transducers is
presented. The method is based on transmitting a chirp and
processing the received signal by applying Least Mean Square
(LMS), where the desired signal is the transmitted chirp. The
envelope of three signals (estimated filter taps, estimated output
and error signal) are characterized with a set of 12 features
which are used to classify a given frame into one of two classes:
proximity active or proximity inactive. The classifier employed is
based on Support Vector Machine (SVM) with linear kernel. The
results show that over 13 minutes of recorded data, the accuracy
achieved is 95.28% using 10-fold cross-validation. Furthermore,
the feature importance analysis performed on the database
indicates that the most relevant feature is based on the estimated
filter taps.

I. INTRODUCTION

Handset designs have rapidly changed over the last years.
The main trend on these designs is to increase the screen area
without increasing the phone size reaching more than 91% of
screen-to-body ratio. The main challenges to increase this ratio
are the different sensors placed on the front of the phone such
as front camera, earpiece, home button or infra-red sensor. This
paper focuses on how the infra-red sensor can be removed.
This infra-red (IR) sensor is used to detect proximity during
calls and lock the screen of the phone when it is next to the
ear thus avoiding the problem of user triggering undesired
commands, e.g. hang-ups, when it is in contact with the face
or ear. Therefore, proximity detection is active when there is
an object, such as the head, close to the screen of the phone
and inactive otherwise.

Proximity detection based on ultrasound can be used to
remove the IR sensor since it employs the transducers already
built-in, i.e. earpiece and microphone, and therefore enables
the new generation of bezel-free handsets.

When using ultrasound signals on handsets, one of the
main challenges is the efficiency of the earpiece at this
high frequency range. The maximum frequency of ultrasound
signals is constrained by the frequency response of transmit-
ter (earpiece) and receiver (microphone). The earpiece and
microphone are designed for audio/speech applications, thus
providing an acceptable frequency response in the audible
frequency range. However, in the ultrasound range, i.e. fre-
quencies greater than 20 kHz [1], the performance is not
guaranteed, and moreover it should be taken into consideration
that the higher the frequency of the signal the higher the
attenuation due to the propagation through the air [2]. The
complexity of using ultrasound signals on smart phone devices
is further increased by the variability of the frequency response

from earpiece to earpiece in the frequency range above 20 kHz,
the non-linearities of the earpiece in the ultrasound frequency
range creating distortions in the audible frequency band and
the headroom limitation to transmit the ultrasound pulse when
the earpiece is driving acoustic signals such as speech in a call.

One common application of ultrasound signals in low power
devices is the estimation of the Time Of Flight (TOF) which
is defined as the time elapsed between the transmission and
reception of the pulse. This measurement is directly related to
proximity detection since this detection can be triggered when
a minimum TOF is detected. Different methods are proposed
in the literature to estimate the TOF. These can be divided
into two groups depending on the emitted signal: continuous
(harmonic, periodic) or discontinuous (pulse) signal [3]. The
latter approach is more often used in the literature due to
its lower power consumption. This group can as well be
subdivided into two main approaches: measurement based on
threshold detection and based on cross-correlation. Another
review of a wide range of techniques to compute TOF is also
provided in [4]. The authors classify these techniques in two
types: time-domain methods and Fourier-domain phase-based
methods. On one hand, in the former group, two sub-classes
are considered: threshold detection and cross-correlation. The
cross-correlation technique is usually referred as matched filter
when the pulse is narrow band, e.g. tone, and referred as pulse
compression when the pulse is wide band, e.g. chirps, because
the cross-correlation produces a pulse whose width is inversely
proportional to the bandwidth of the chirp. On the other hand,
Fourier-domain phase-based methods can be implemented
using a single-frequency, multi-frequency or chirp signals. The
main idea is to derive the TOF from the phase of the received
signal. The accuracy and TOF range depends on the number
of frequencies and the bandwidth. In addition, hybrid methods
based on both approaches are also reviewed.

In [5] several methods proposed previously in the literature
are compared to a method based on an adaptive Finite Impulse
Response (FIR) filtering using Least Mean Squares (LMS)
error criterion. The coefficients of the filter are interpolated
and employed to compute the delay by searching for local
maxima. The results indicate that LMS approach performs
better than cross-correlation when several echoes are received.
In [6] multiple adaptive filtering methods based on LMS are
analysed with regards to accuracy and computational cost.

In [1] Laguerre basis functions are employed to build a
generalized correlation function. This approach does not need
a priori knowledge about the pulse since it applies the Laguerre
basis functions to the signal which decay exponentially to zero
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(similar to the received pulses). It estimates the TOF as well
as the characteristics of the ultrasound echo envelope employ-
ing a Kalman filter where the measurement of true Kalman
state is derived from the Laguerre functions. These functions
are also employed in [7] in order to classify echoes with
different dumping factors. The K-nearest neighbour classifier
is employed to classify 6 different dumping factors. In this
case, the features are derived from the Laguerre coefficients
after applying Linear Discriminant Analysis (LDA) and the
Laguerre coefficients are obtained by expanding the echo
envelope into an orthonormal set of Laguerre functions.

The TOF in [8] is computed employing a wavelet network.
This network is a function constructed with a finite number of
wavelets with different characteristics, i.e. weight, translation
and dilation. These characteristics are trained with a set of
examples in order to output the correlation function and thus
obtain the TOF on unseen data.

In [9] a system based on Code Division Multiple Access
(CDMA) is proposed to improve TOF estimation. The authors
in [10] apply a pulse compression technique and the max-
imum of the cross-correlation is used to estimate the TOF.
The novelty in this paper is on reducing the costs of this
cross-correlation. This consists of a recursive cross-correlation
operation of single-bit signals and an average filtering. The
signals are converted to single-bit by a delta-sigma modulator.

Several methods have been proposed in the literature to
perform proximity detection on a handset using existing trans-
ducer and ultrasounds. In [11] two LMS adaptive filters are
used to model the acoustic impulse response from the earpiece
to the microphone. One of these filters is constantly estimating
the response, whereas the other filter is only active when
proximity is inactive. The step size of the first filter is relatively
higher than the second filter to account for rapid changes, i.e.
handset movements. The proximity detection flag is triggered
when the difference between the responses of each filter is
higher than a predetermined threshold. The method proposed
in [12] employs two microphones distant from each other such
that one of them is covered by the head’s user when proximity
is active. The signals of both microphones are compared by
means of the energy present in higher frequencies normalized
by the total energy. The motivation for this comparison is
that when the head is close to the handset it acts as a low
pass filter. Therefore, the proximity flag is activated when
difference between normalized energy of both microphone is
above a given threshold. A method purely based on correlation
between the transmitted and received signal is proposed in
[13]. The proximity detector is triggered when the correlation
lag is lower than an upper bound and its amplitude is between
a predefined range of values.

Motivated by the performance achieved with the LMS
approach shown in [5] and its low complexity, we propose
in this work a proximity detection algorithm based on LMS.
However, instead of exploiting the local maxima of the esti-
mated filter coefficients, we propose to model the shape of this
filter in addition to the error and estimated output signals for
both classes, i.e. when the proximity detection is active and

when it is inactive. Then, a set of features from these three
signals is extracted for a given frame and classified based on
two values: the distance to the hyperplane that separates both
classes, using the Support Vector Machine (SVM) approach,
and the classification output in the previous frame.

The remainder of this paper is organized as follows. In
Section II the proposed algorithm is presented, followed by
the evaluation performance in Section III and the conclusion
of this work in IV.

II. ALGORITHM

The method proposed in this section is based on modelling
the reflections of a transmitted ultrasonic pulse. This modelling
is performed using the LMS filter. Once these reflections are
characterized, the proximity detection decision is derived from
the characteristics of estimated LMS signals.

Figure 1 shows the complete block diagram of the proposed
approach. Firstly, the ultrasound signal and potentially audio
is sent to the earpiece (“Chirp + Audio”). A high pass filter
is employed to remove low frequencies of the transmitted
and received audio (“HPF”) which may distort the estimated
response due to the presence of noise in the transmission
channel at these frequencies, e.g. background noise or speech.
The received audio, captured in non-overlap blocks of 4096
samples, is then averaged over 2 blocks (“Blocks avg.”) to
reduce the noise and enhance the desired signal. This signal,
together with the high pass filtered transmitted signal, is used
in the LMS approach to compute the estimated received signal
ŷj , the error signal êj and the estimated impulse ĥj at j frame
which are averaged over the last 4 estimates to reduce noisy
estimations. The features described in Section II-B are com-
puted and averaged for a period of 20 pulses in order to have a
smoother behaviour of these features. Finally, the classification
is based on the pre-trained SVM introduced in Section 2.3.
This classification provides the binary decision regarding the
proximity detection. Table I shows the parameters used in this
work.

Parameter Value
Sampling frequency 96 kHz

Pulse length 4096 samples
Pulse amplitude -14 dBFs

Chirp initial and final freq. 25 kHz - 35 kHz
HPF cut frequency 20 kHz
Block avg. length 2

Estimate avg. length 4
Feature avg. length 20

TABLE I
MAIN PARAMETER OF THE ALGORITHM.

In this section, the LMS algorithm is firstly introduced.
Then, a description of the features employed to characterize
the impulse response is presented followed by the classifier
used to detect proximity.

A. Least mean square adaptive filtering

The acoustic transfer function h(n) provides information
about how the transmitted signal from the earpiece x(n) is
modified in order to receive the signal y(n) at the microphone
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Fig. 1. Block diagram of the proposed method. HPF stands for high pass filter and LMS for least mean squares method.

position assuming no external noise sources are present, and
therefore it gives an indication of the number and magnitude
of the reflections occurred while transmitting the pulse x(n).
These reflections can potentially be used to estimate proximity.

In order to compute an estimate ĥ(n) of h(n) the adaptive
filtering LMS [14] is employed in this work. The estimated
received signal is given by

ŷ(n) =
M−1∑
m=0

ĥm(n)x(n−m) = ĥ
T

(n)x(n) (1)

where ĥ(n) = [ĥ0(n), ĥ1(n), · · · , ĥM−1(n)]T is an M tap
FIR filter estimation of the acoustic feedback h(n) and
x(n) = [x(n), x(n − 1), · · · , x(n −M + 1)]T comprises the
last M transmitted samples.

The estimated transfer function ĥ(n) is computed using
LMS by minimizing the mean squared error at sample n as
follows

arg min
h(n)

E{e2(n)} = arg min
h(n)

E{[y(n)− ŷ(n)][y(n)− ŷ(n)]}

(2)
In order to minimize the cost function in (2), an estimate of

the exact gradient of the error is used, the so called stochastic
gradient [14], obtaining the following update equation for
ĥ(n)

ĥ(n+ 1) = ĥ(n) + 2µx(n)e(n) (3)

Finding the learning rate µ that guarantees the convergence
using this updating procedure becomes tricky since the weight
updates are proportional to the magnitude of the input x(n)
and therefore sensitive to the input scaling. Instead, the nor-
malized LMS (NLMS) introduces a normalization factor in
the weights adaptation to avoid this problem

ĥ(n+ 1) = ĥ(n) + µ
x(n)e(n)

x(n)Tx(n) + ε
(4)

Figure 2 presents ĥ(n) with M = 256 for two cases:
when the proximity is active and when it is inactive. As
introduced previously, the magnitude of the first taps of the
estimated response ĥ(n) is higher when the target is present
compared to the situation where the target is not present which
indicates that ĥ(n) contains relevant information to detect the
proximity state. In next section, a set of features extracted from

this estimated transfer function in addition to the estimated
received signal ŷ(n) and the LMS error e(n) is presented in
order to determine the proximity state.
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Fig. 2. Example of the ĥ estimated for proximity detection inactive (top) and
active (bottom).

B. Feature extraction

The feature vector refers to a vector F j of different val-
ues {F1,j , F2,j , · · · , FL,j} computed from the LMS output
signals, namely ĥj , ŷj and ej . This vector is calculated
for the jth received pulse, thus the length of ŷj and ej is
4096 samples whereas ĥj comprises 256 taps. The features
proposed are based on the first 4th statistical moments, i.e.
mean, variance, skewness and kurtosis. The mean describes
the central tendency of a distribution, whereas the variance
and skewness characterize the width and asymmetry of the
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distribution around this mean and the kurtosis characterizes the
peakedness of the distribution [15]. These statistical features
are extracted from the envelopes of the signals considered as
probability density functions following

• Mean

µ =
N−1∑
i=0

Zi · PZi
(5)

• Variance

σ2 =
N−1∑
i=0

(Zi − µ)2 · PZi
(6)

• Skewness

s =
N−1∑
i=0

(Zi − µ)3

σ3
· PZi

(7)

• Kurtosis

k =
N−1∑
i=0

(Zi − µ)4

σ4
· PZi

(8)

where Zi is the ith sample position of a total of N samples
and PZi

is the probability density function (pdf) at Zi. These
pdfs are defined as the envelopes of the signals normalized
such that

∑N−1
i=0 PZi

= 1, where the envelope is computed
following the Teager-Kaiser method applied every sample on
ĥ, and every 50 samples on ŷ and e. This envelope can be
calculated as χ(n)2 − χ(n − 1) · χ(n + 1) for the signal
χ(n). This down sampling reduces the computational cost of
estimating the moments of the envelope.

The length of the feature vector F j is 12, i.e. L = 12, and
the elements of F j are computed as follows

• {F1,j , F2,j , F3,j , F4,j} : First 4th moments of the enve-
lope distribution of the LMS estimated response ĥj .

• {F5,j , F6,j , F7,j , F8,j} : First 4th moments of the enve-
lope distribution of the LMS desired signal estimate ŷj .

• {F9,j , F10,j , F11,j , F12,j} : First 4th moments of the
envelope distribution of the LMS error ej .

A time moving average filter of order Q − 1 is applied to
this feature vector in order to increase the robustness against
outliers. This filtering is performed by

F j =
1

Q

Q−1∑
i=0

F j−i (9)

C. Classification

Once the feature vector F j is computed, the proximity
decision is based on a linear regression derived from SVM
approach [16]. This method seeks for a hyperplane to separate
classes, i.e. active vs. inactive, such that the margin m between
classes is maximized as shown in the example of Figure 3. This
hyperplane is defined as F j ·W + b = 0, where F j is the
feature vector defined in Section II-B. The hyperplanes defined
by the support vectors of each class, this is F j ·W +b = 1 and
F j ·W+b = −1 for proximity active and inactive respectively,
can potentially be used as the threshold to switch between one
proximity state to another proximity state. This is similar to

Fig. 3. SVM illustration.

hysteresis thresholding and it is referred in this work as dual-
threshold.

III. EVALUATION

A. Experimental Setup

The entire database used in this work comprises 13 minutes
of data recorded with a Samsung Galaxy S6 handset. In 52%
of the frames the proximity detection is active, whereas the
remaining of the frames it is inactive. The data was captured
along different days following the next procedure: first, the
user places the handset in the desired proximity detection state,
i.e. active or inactive, and then records the data and labels it
as the desired proximity detection state. Next recordings are
carried out the same manner and at the end of the process all
the recordings are concatenated. Therefore this database does
not capture the transitions between proximity detection active
and inactive and vice versa which can be extremely subjective
and could lead to ambiguous decisions.

The evaluation metric used to measure the performance
of the proposed algorithm is the accuracy, i.e. 1 − Υ where
Υ is the error rate, computed from a k-fold cross-validation
applied to the entire database with k = 10. This procedure
randomly splits the entire database into k partitions with the
same number of observations. Then k− 1 partitions are taken
for training and the remaining partition is used to compute
the evaluation metric. This process is repeated k times using
each of the available partitions for evaluation and the reported
evaluation metric Υ is the average of all k metrics computed
for each partition. Furthermore the error Υ is broken down into
false positive and false negative to find the most common error
type. In addition, a feature importance analysis is carried out to
find those features that are more relevant for this classification
task. The feature importance analysis approach employed in
this paper is based on the weighted support machine vector of
the model by the coefficients [17].

B. Results

1) Classification performance: A cross-validation test is
performed on this database using 10-fold evaluation achieving
on average an accuracy of 93.69% with a 2.46% of false
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Rank Feature
index

Classification
accuracy Description

1 3 78.25 Skewness of ĥj

2 1 82.82 Mean of ĥj

3 11 89.71 Skewness of ej
4 10 92.14 Variance of ej
5 5 92.93 Mean of ŷj

6 2 92.88 Variance of ĥj

7 9 93.17 Mean of ej
8 6 93.12 Variance of ŷj

9 8 93.33 Kurtosis of ŷj

10 7 93.46 Skewness of ŷj

11 4 93.68 Kurtosis of ĥj

12 12 93.69 Kurtosis of ej

TABLE II
SUMMARY OF THE IMPORTANCE OF THE FEATURES IN THE SET F j . IT IS

RANKED FROM THE MOST IMPORTANT TO THE LEAST IMPORTANT.

positive and 3.85% of false negative. This suggests that the
detection of the inactive state is more challenging.

In order to reduce errors, a dual-threshold is used instead of
using only a single-threshold, i.e. hyperplane derived by SVM.
The dual-threshold approach employs the hyperplanes defined
by the support vectors of each class to change the proximity
state, therefore it keeps the previous state in case −1 < F j ·
W + b < 1 and it changes the state to active or inactive in
case F j ·W + b ≥ 1 or F j ·W + b ≤ −1 respectively. This
dual-threshold approach increases the accuracy from 93.69%
to 95.28% with a false positive rate of 1.28% and false negative
rate of 3.44%.

A matched filter approach based on [13] was initially tested,
however it did not provide meaningful results due to the
reduced chirp amplitude employed to avoid audible earpiece
distortions.

2) Feature importance: The feature importance ranking is
shown in Table II in a decreasing order. This method uses
the single-threshold to perform the classification. It shows in
the second column the corresponding feature index, a value
from 1 to 12. The third column includes the classification
accuracy using this feature in addition to all previous more
relevant features and in last column describes briefly each
feature. This table indicates that the most important feature
for this classification task is based on ĥj . Figure 2 shows an
example of how ĥj changes when the proximity flag is active
and when it is inactive, and it suggests that the mean and
skewness increases when proximity is inactive compared to
the active state. Table II also indicates that the statistic less
relevant for this classification task is the kurtosis.

IV. CONCLUSIONS

We have presented a novel approach to perform proximity
detection on handsets. This approach is based on transmitting
ultrasound chirps and processing the received reflections. The
power of these transmitted signals is limited to avoiding
any audible artefact in the earpiece. The accuracy achieved
with this method is 93.69% on a 13 minutes long database.
This accuracy is increased to 95.28% when dual-threshold is
used. The feature importance analysis suggests that the most

important feature is the skewness of the estimated impulse
response. Only using this feature for classification purposes
provides 78.25% accuracy. The proposed approach is robust
to modification of gain factors, such as earpiece or microphone
gain, since it models the shape of the received signals rather
than energies and does not create any audible artefact.
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