
Modeling the visual pathway for stimulus
optimization in brain-computer interfaces

F. Sobreira, C. Tremmel and D.J. Krusienski
Biomedical Engineering

Old Dominion University
Norfolk, VA 23529

Email: fsobr001@odu.edu

Abstract—Common brain-computer interface (BCI) paradigms
such as P300 Speller and steady-state visual evoked potential
(SSVEP)-based interfaces use brain responses to visual stimuli
to identify the user’s intended target to achieve device control.
Many BCI paradigms and decoding approaches do not directly
consider the underlying physiology of the sensory pathway and
brain responses. By accurately modeling the sensory pathway, it
is possible to design new spatial and temporal stimulus patterns
to enhance brain response characteristics. This study presents a
combined model of the human retina with an artificial neural
network (ANN) in order to estimate electroencephalographic
(EEG) brain activity trained on actual EEG data. Based on this
new visual pathway model, techniques can be developed to create
and validate improved stimulus sequences for BCIs and other
neurotechnologies.

I. INTRODUCTION

Brain-computer interface (BCI) research has matured over
several decades and has produced schemes that are approach-
ing practical information transfer rates (ITRs). The ITRs of
current high-speed spelling techniques based on non-invasive
BCIs are on the order of ∼ 0.8 bit/s for P300 [1] and ∼ 4.5
bit/s for steady-state visual evoked potentials (SSVEP) [2].
Advances have been made in the interface design [3], stimulus
design [4], and classification schemes [5] for these paradigms.
In particular, studies have shown that the spatial and temporal
patterns of the visual stimuli can significantly impact the
EEG responses and, hence, BCI performance. Waytowich et
al. showed that a specific spatial frequency of an SSVEP
checkerboard achieves a desirable balance in BCI performance
and user preference measured by visual irritation [4]. Bin et
al. showed that it is possible to eliminate frequency biases
prevalent in fixed-frequency SSVEP paradigms by instead us-
ing temporal flashing codes such as pseudorandom sequences
[6].

While it is clearly evident that the spatial and temporal
characteristics of the visual stimulus will impact the resulting
EEG responses, the aforementioned studies derived and tested
the stimulus parameters empirically with little or no basis on
physiology. In order to further optimize visual stimuli design
for enhancing EEG responses, the electrophysiology of the
visual pathway to the cortex, and scalp for surface EEG,
should be considered. Components of this pathway have been
previously modeled including the human retina [7],[8], the
generation of VEPs [9], the primary visual cortex (V1) [10],

cortical neurons [11], and modeling EEG from cortical neu-
rons [12]. Most of these models are designed as stand-alone
components and have not been implemented in combination
with other models to represent the full visual pathway to the
brain. Additionally, some parts of the pathway, particularly
between the retina and V1, including the lateral geniculate
nucleus (LGN), do not have well-established models.

The proposed model represents a preliminary approach
to reproduce EEG measured over the visual cortex using
incoming light intensity as the input to the model. This
model combines existing work on the virtual retina [7] with
a feedforward artificial neural network (ANN) that will be
trained using actual EEG data to match the function of the
pathway between retina and an EEG electrode. Future work
will further refine this preliminary coarse model of the visual-
to-EEG pathway with more sophisticated and physiologically-
inspired models, particularly of the retina-V1 pathway. The
ultimate objective of this effort is use the model to design
optimal spatio-temporal visual stimulus sequences that maxi-
mize and/or maximally discriminate some relevant measure of
EEG to enhance detection and performance in BCIs and other
neurotechnologies. It is envisioned that the proposed models
can be extended to optimize stimuli for other physiological
responses and sensory pathways.

II. METHODOLOGY

The basic visual pathway model consists of a virtual retina
model followed by a feedforward ANN as an initial, non-
specific model of the retina to cortex pathway, as illustrated in
Figure 1. Binary image sequences were presented to a virtual
retina model that performs a series of spatio-temporal linear
filtering that represent the different layers in the human retina.
The resulting voltage at the ganglion cells is then transformed
into simulated action potentials that are subsequently applied
to the ANN. The ANN is trained using actual EEG to simulate
a visual-evoked potential (VEP) from a single or multiple
channels over the visual cortex (i.e., Oz).

A. Virtual Retina Model

The virtual retina model describes conversion of a light
stimulus incident on the human retina to an electrical stimulus
at the visual nerve in 3 stages. The first stage, the outer
plexiform layer, represents photoreceptor and horizontal cells
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Fig. 1. A block diagram of the model. Flashed binary images were presented to the subject and used as input to the visual pathway model. The actual EEG
was used to train an artificial neural network to replicate the VEPs.

and is modeled as a spatio-temporal Gaussian filter. The
second stage, the inner plaxiform layer, represents bipolar and
amacrine cells and achieves contrast gain control through a
nonlinear feedback loop. The last stage, the ganglion layer,
adds another spatio-temporal filter to the IPL output and
generates action potentials in the ganglion cells using a noisy
integral-and-fire neuron model.

The virtual retina was parametrized to simulate a human
retina with contrast gain control and one output ganglion layer.
A temporal step of 0.01ms was set for the calculation, and
an input luminosity range from 0 to 255 using a resolution
of 50 pixels per retina degree (roughly simulating a screen
perception located 50cm from the eye). This configuration
provides 400 spiking cells output, organized in a square
configuration of 20 X 20 cells.

B. Visual Stimuli

The image sequences presented to the virtual retina model
were presented for 200ms with 600ms of empty (black)
screen before and after each image presentation. Ten differ-
ent target images were designed for this experiment, sized
640×640 pixels on a black background. Four images are basic
geometric designs (two squares with edges of 200 and 400
pixels, respectively; two circles with diameter of 200 pixels
and 400 pixels, respectively), three spirals with widths of 20,
40 and 80, respectively; and three checkerboards with spatial
frequency of 0.15, 0.3 and 2.4 cycles/deg, respectively. Figure
3 depicts each respective target image.

There are several motives for selecting the various target
images. The virtual retina model contains a contrast de-
tection mechanism that produces more action potentials for
more contrast edges in the image. Hence, the spirals and

the checkerboards were included. Additionally, for similar
reasons, checkerboard patterns are also commonly used as
SSVEP-BCI stimuli. Based on Waytowich et. al. [4], the three
spatial frequencies that generate the highest classification rates
were selected. The squares and circles were selected as a more
general representation of the type of stimuli used for the P300
speller.

C. EEG Data Collection and Processing

Data were collected from two able-bodied subjects seated in
a comfortable chair, 50 cm from a 21′′ monitor in a dark room.
The ten targets were presented to each subject. Similar to the
virtual retina model, stimuli were presented 200ms and with
3000ms inter-stimulus interval to prevent noise of previous
target. Signals were sampled at 256Hz using an EEG amplifier
with 16 active-wet electrodes (g.USBamp, g.GAMMAsys,
g.tec, Austria) and were bandpass-filtered between 1 and 60
Hz. A 60Hz notch filter was applied to reduce power-line
interference. The locations of the 16 EEG electrodes (10-20
system) are shown in Figure 3: Oz, PO7, PO8, P4, P3, Pz,
Cz, Fz, PO4, PO3, P6, P5, CPz, C4, C3, ground at FPz, and
reference at the left earlobe.

Each subject completed 2 blocks of 18 to 20 runs of the
10 targets images, with the image order presented in a block-
randomized fashion. The VEP windows were extracted from
600ms prior to the stimulus to 800ms post-stimulus. The
VEPs were smoothed using a bandpass of 1 − 10Hz and
downsampled by factor of 4, generating 90 output samples
per channel. Only the 8 channels over the visual cortex were
used for analysis: Oz, PO7, PO8, P4, P3, Pz, PO4, and PO3.
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Fig. 2. Target images, a) Checkerboard 0.15c/deg, b) Checkerboard
0.3c/deg, c) Checkerboard 2.4c/deg, d) Circle d = 200 pixels, e) Circle
d = 400 pixels, f) Spiral w = 20 pixels, g) Spiral w = 40 pixels, h) Spiral
w = 80 pixels, i) Square l = 200 pixels and j) Square l = 400 pixels

Fig. 3. Electrode montage used for this study.

D. Retina-EEG Modeling

A feedforward Artificial Neural Network (ANN) was used
to process the simulated action potentials (spikes) and estimate
the VEP for each stimulus input. The ANN was composed of
three hidden layers with 200 hidden units each and train on the
actual VEPs. At the output of the virtual retina, the spikes were
spatially rescaled to 50% of the original size using a bicubic
interpolation method and the frames were downsampled by
factor of 5, resulting in 1700 features for each image target
that were used as input for the ANN. To roughly model the
noise in the VEP response due to the fact that no signal-trial

VEPs to a given image stimulus will be identical, Gaussian
white noise at ±2.5% of the single-trial amplitude range was
added to the data [13].

The data from both subjects combined were used to train
the ANN. The data were divided into 80% of the trials for
training and the remaining 20% as an independent test set. The
training data was further subdivided into 70%, 15%, and 15%
respectively for training, validation, and testing. For increased
computational efficiency, the scaled conjugate gradient func-
tion was used to train the ANN with parallel working GPU
cores, and 5-fold cross validation was performed.

III. RESULTS

The visual pathway model was able to reproduce simulated
VEPs that are highly correlated with the actual VEPs and
also are discriminable across the various input images. Figure
4 shows a comparison of the simulated and actual VEP
waveforms, averaged across the 8 visual cortex electrodes, for
a given target image. While the salient amplitude peaks are
clearly aligned, the simulated VEP is slightly attenuated.

The Pearson correlation coefficient was computed between
each pair of simulated and actual VEP waveforms, averaged
across the 8 visual cortex electrodes. To simplify the compar-
isons and evaluate the equivalent of a 4-class BCI, the results
from 4 images that produced the largest differences in average
correlations within and across the target images (images b, c,
i, and j from Figure 2).

Figure 5 shows the Pearson correlation coefficients between
the actual VEPs across the subset of 4 target images. In
comparison, Figure 6 shows that for the same image subset,
the simulated an actual VEP waveforms are highly correlated
(median correlation 0.91) for the same target image, while
the correlations are significantly reduced when comparing be-
tween different target images (median correlation 0.48). Thus,
the model preserves the subtle differences and discriminability
of the actual VEPs for different target images.

Fig. 4. Example waveforms for simulated and actual VEPs averaged across
the 8 visual cortex electrodes.
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Fig. 5. (Left) Correlation between actual VEP waveforms for 4 different target
images. (Right) Correlation box plot the non-intended targets (off-diagonal).
The correlation is 1 for the diagonal elements.

Fig. 6. (Left) Correlation between actual and simulated VEP waveforms for 4
target images. (Right) Correlation box plot for the intended targets (diagonal)
and non-intended targets (off-diagonal).

IV. DISCUSSION

The proposed visual pathway model, extending the virtual
retina with an Artificial Neural Network, proved to be effective
for simulating distinct VEPs from different binary target
images. The correlations between the actual and simulated
VEPs for the same target image reached 0.93 with a median
of 0.91, while the median correlation between different target
images was 0.48. This demonstrates that the model has highly
consistent performance in simulating the desired VEP across
different target images while remaining distinct from the VEPs
from other target images. Further analysis is needed to under-
stand exactly how the spatial patterns of the images affect the
simulated EEG based on the model. More systematic image
patterns will be developed and tested, considering important

parameters for comparisons such as fixing the average contrast
of the input images and local spatial features.

Using such models, the spatio-temporal parameters of the
visual stimulus patterns that maximize and/or maximally dis-
criminate some relevant measure of EEG can be determined
empirically, analytically, or computationally. Future work will
aim to make the model more biologically plausible and
amenable for tractable optimization using information theo-
retic techniques, for instance. An example of a biologically
plausible approach is to replace the ANN with a three-
dimensional neuronal network to model the various layers
of the visual cortex. In this approach, the training algorithm
would not train the strength of the connections of the different
layers but actually form connections between the neurons as
in biological neural networks [11]. Additionally, the resulting
neurons could be modeled as electric dipoles for estimation of
the scalp potentials through inverse modeling.

Using this approach, subject-specific or subject-independent
models can be created and the physiologically-optimal stimuli
can be designed to enhance the performance of BCIs and other
neurotechnologies. Furthermore, the modeling and optimiza-
tion framework can be adapted for any sensory pathway to the
brain, and potentially any physiological output signal.
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