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Abstract—In the past few years, 3D models have emerged as
the focus of many new applications. This recent popularity of
3D models has stimulated researchers to investigate the problems
of 3D shape retrieval and to develop more efficient search and
retrieval methods. Aiming to contribute to the recent literature,
this work proposes a novel 3D shape characterization method
using the complex network theory. By modeling a 3D shape
object as a complex network we are able to effectively represent,
characterize and analyze the object is terms of the topological
properties of the complex network. Comparison with two other
known methods for 3D model description, shape histograms and
shape distributions, on a 3D models data set shows that the
proposed technique is a feasible approach to efficiently perform
3D shape characterization and discrimination.

I. INTRODUCTION

Over the last years, there has been an increase in the use
of three-dimensional (3D) models as a tool for describing and
studying objects in many specific domains. In medicine, 3D
models are a important tool, often used to better describe an
structure or as an intermediate step in a procedure. For ex-
ample, 3D bone models are an important issue in radiological
and orthopedic environments. 3D bone models of the knee
joint can be obtained from computed tomography (CT) and 3T
magnetic resonance (MR) imaging [1]. 3D modelling is also
a necessary step for reconstructive surgery with osseous free
flaps [2]. Research in urban environment aims the generation
of 3D city models with absence of data (such as elevation
data) [3], [4]. In computer sciences, depth cameras can be
used to create real time 3D face modeling systems and improve
face recognition [5]. The impact of 3D digital models is so
great that it is considered as the “4th wave of multimedia” [6]
(audio, image and video are, respectively, the first, second and
third wave).

From the use of 3D models emerges the need to create
mechanisms to organize, research and recovery models in large
repositories [7], [8], [9], [5]. However, 3D model recovering
is a difficult and challenging task, due its greater complexity,
diversity of information, data representation and number of di-
mensions. Literature provides an extensive amount of methods
to describe and recognize a 3D object [10], [7], [8], [9].

In this paper, we propose to use complex networks to
analyze and describe 3D models. Complex network is a special
type of graph and it has particular properties not found in
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simple graphs. These properties are useful to analyze the
topographic aspect of the network [11], [12] and, consequently,
describe the object model as a network [13], [14], [15]. In
fact, the study of complex networks can be described as an
intersection between graph theory and statistical mechanics
[11].

The remaining of the paper is organized as follows: Section
IT introduces the concept of Complex Network and describes
how a point cloud of a 3D object can be modeled as a
network. In Section III we propose to use the vertices’ degree
distribution to compute a signature capable to describe the
topological characteristics of the network representing the 3D
object. We propose an experimental setup to evaluate our
approach in Section IV. We discuss the results obtained by
our approach and other compared methods in Section V, while
Section VI concludes the paper.

II. COMPLEX NETWORK APPROACH FOR 3D SHAPE
ANALYSIS

The research in complex networks started with the studies of
Flory [16], Rapoport [17], [18] and Erdos and Rényi [19], [20].
Literature shows an increase interest in complex networks
in the last few years. Its recent popularity is due its great
flexibility and generality. Complex networks are capable of
representing virtually any natural structure, including those
undergoing dynamic changes of topology [12]. As a result,
many areas have focused on the the study of statistical prop-
erties of the complex networks [21], [22], [23], here included
the many topics of computer vision [13], [14], [15], [11]. In the
following sections we show how the complex network theory
can be used to model and discriminate a 3D shape model.

A. Point cloud as a complex network

Usually, we can define a 3D object as a cloud of points
where each point p; = (%;,¥;,2i), ¢ = i,..., NN, occupies
a given position in the Cartesian plane, p; € R3. We can
easily model this 3D object as a graph or network and use its
topological properties for identification and comparison with
other networks and, consequently, other 3D objects [9]. A
graph G = (V, E) is built by considering each point p; of the
3D object as a vertice v; € V of the graph G. The vertices
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associated to two points p; and p; are connected by a non-
directed edge e; ; € E, e;; = (pi,p;) and its weight, w; ;, is
defined as the Euclidean distance their respective points:

wij = \/(xz‘ —2)? + (4 —y)? + (z - z)? (D)

We used Euclidian distance as it is not affected by rotational

and translational operations. To avoid influence of the scale of

the 3D object, it is interesting to normalize the weight w; ;

in the interval [0,1]. This is performed by using the largest
weight computed for an edge

Wi,

2

7 max’wi,jEW

Since all vertices are connected to each other and, therefore,
have the same number of connections, the initial network
behaves as a complete and regular network. A regular network
does not have any relevant property that can be used to
describe the 3D object modeled. Thus, it is necessary to
apply a transformation in order to convert this network into
one that possesses relevant properties for 3D object analysis.
A simple and straightforward approach is to simulate the
dynamic evolution of the network through a set of thresholds T’
applied over the original set of edges E. Each threshold ¢t € T’
enables us to select a subset of edges E;, Ey C F, where each
edge of e; ; € E; has weight w; ; equal to or smaller than ¢. By
considering the original set of vertices V/, this approach creates
a new network G; = (V, E;) representing an intermediary
stage in the network evolution. Each network G; has its own
properties that change according to the value of the threshold
t used as we discuss in the following sections. Figure 1 shows
an example of the dynamic evolution of a network. Notice
that the threshold acts as a visibility control in the network,
limiting which vertices are reachable from a specific vertice.

B. Degree histogram

One of the most basic attributes of a graph or network is the
degree (or connectivity) of a vertice v, deg(v). This attribute
represents the number of edges connected to v, i.e., the number
of neighbors of a vertice v. The degree of a node v is defined
as:

deg(v) = |0v| = [{v' € V|{v,v'} € E}], 3)

where Jv is the set of neighbors of v, and |A| denotes the
number of elements of a set A [24].

The degree is a local attribute, i.e., it does not give us
information about the whole structure of the network. A
simple approach to obtain a concise description of the network
topology is to compute the degree histogram of the network.
The degree histogram provides a rough sense of the degree
distribution and density, as also is a source of statistical
information about the network topology. Mathematically, the
degree histogram, h, is defined as

h(i) = (deg(v), i) 4

veV
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Fig. 1. Dynamic evolution of the network: (a) Point cloud of an object; (b)
Region selected from (a); (c) Complex network computed using ¢ = 0.025;
(d) Complex network computed using ¢ = 0.050.
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where §(j,1) is the Kronecker’s delta. From the probability
density function p(7) of the degree histogram h(%) it is possible
to compute a set of first-order statistics [25], [14]. These
statistics are a feasible approach to characterize the network
topology. In this paper, the following set of 9 features were
evaluated: mean, variance, contrast, energy, entropy, kurtosis,
skewness, smoothness and inverse difference moment (IDM)

(&)

III. COMPLEX NETWORK SIGNATURE

In order to characterize a 3D shape object it is necessary to
build a feature vector capable of describing it. To accomplish
that we propose to create a feature vector representing the
variation of the properties of the complex network as it goes
through dynamic evolution.

From the initial network modeled from the original 3D
object we are able to compute different complex network
variations. Each variation is the result of applying a threshold
t € T over the original one, thus simulating its dynamic
evolution. The threshold affects the topology of the network
and changes its degree distribution, represented by the degree
histogram, and, consequently, it affects the values of the 9
features compute from the histogram. Thus, by considering
different threshold values ¢, we are able to compute a feature
vector ¢ containing temporary characteristics of the network:
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SOZ[Fk<t1)7"'7Fk(tM)]7tieT? (6)

where FJ(t) represents a subset of features selected from
the 9 features available. Since we have 9 features, there are
29 — 1 combinations of features, ie. k¥ = 1,...,511. We
define a feature combination £ as the selection of the features
associated with the bits 1’s in the binary representation of k.
Table I shows this scheme for selecting a subset of features.
In this paper, we considered the following order of features
during the selection: mean, variance, contrast, energy, entropy,
kurtosis, skewness, smoothness and inverse difference moment
(IDM).

TABLE I
SCHEME FOR SELECTING A SUBSET OF FEATURES

Binary (k)
000000011
18 000010010
278 100010110

Features (F})
smoothness and IDM

entropy and smoothness

mean, entropy, skewness and smoothness

IV. EXPERIMENTAL EVALUATION

To evaluate the discrimination ability of our method we
designed an experiment using a dataset of artificial 3D models
(available at http://segeval.cs.princeton.edu) [26]. This dataset
represents a set of 19 different types of 3D models (classes)
with 20 samples each, totalising 380 3D objects. Each sample
represents a variation (e.g., different orientation, articulation
etc) of the 3D model representing the class.

For each model, we computed our approach using different
threshold values, ¢. For each threshold, we computed the
degree histogram of the respective complex network and its
9 features, as previously proposed. We evaluated the resulting
feature vectors using k-Nearest Neighbor (k-NN) with k = 1.
This is a very simple classification technique, where each
sample is classified according to the k closest training samples
in the feature space [27].

To improve the evaluation of our 3D shape description
approach, we also implemented and compared ours with other
two known approaches: (i) 3D shape histograms and (ii) Shape
distributions. A brief description of these approaches is given
as follows:

3D shape histograms [8]: this approach uses 3D shape
histograms to compute a discrete representation of a 3D object.
To accomplish that, the method decomposes the space where
the object is using one of the three suggested techniques:
(i) shell model, (ii) sector model and (iii) the combination
of shell and sector models. For each technique the method
obtains a different histogram, where each bin stores the amount
of vertices in the correspondent partition of the decomposed
space. Since the orientation of the object may affect the bin
counting, the methods uses a normalization as a pre-processing
step. This normalization moves the center of mass of the object
onto the origin and, in the sequence, applies the Principal Axes
Transform [8] over the object to ensure that the variance of the
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objects’ points are aligned with the axes. In this experiment,
we computed a histogram using 10 shells and 8 sectors instead
of the configuration proposed in the original paper (20 sectors
and 6 or 12 shells) as it leads to a higher success in this set
of artificial 3D models.

Shape distributions [7]: this method uses a sampled proba-
bility distribution for describing 3D objects. The method uses
a shape function computed from randomly select points on
the surface of the 3D object. This results in a histogram
(probability distribution) which reflects geometric properties
of the 3D object that can be used for its characterization.
One drawback of this approach lies in the choice of the
shape function, which must be carefully selected to result in a
probability distribution that provides a good shape signature.
According to authors [7], although many and different shape
functions can be used to describe the object, D2 shape function
is the one achieving the best results and was used in ours
experiments. D2 shape function measures the distribution of
Euclidean distances between pairs of randomly selected points
on the surface of a 3D model. We used L1 norm of the
probability density function of the D2 shape function as the
dissimilarity measure. We also performed a normalization step
to align the mean sample values of two compared probability
density functions.

V. RESULTS AND DISCUSSION

Initially, our approach computes the euclidean distance
among each pair of points of a 3D shape object and, in the
sequence, normalizes all values according to the largest one.
This is performed to avoid scales variations. As a result, we
obtain a complete and regular network as a representation of
the original point cloud. Since a regular graph does not present
any relevant feature that could be used for 3D model matching,
we apply the concept of dynamic evolution to transform the
original network into one with desirable properties. Then, for
each network, we obtain its degree histogram and a set of
9 features can be computed to be used to discriminate the
original 3D object. However, to effectively apply our proposed
approach for 3D model description it is necessary to define
the set of thresholds 7" used to perform the dynamic evolution
of the network, as also which combination of the 9 features
considered yields the best discrimination of the 3D model.

First, we evaluated the impact of different sets of threshold
in the classification performance of the method. For this
experiment, we considered one single feature from each his-
togram: the energy of the histogram. Table II shows the results
achieved for each set of thresholds. In order to establish
each threshold set, we defined the arithmetic progression (AP)
tn = to + (n — 1)tin. to mathematically compute them.
Results show that the method yields best success rates when
the threshold set ranges from 0.020 to 0.500 (Set 1), i.e.,
the vertices are allowed to connect with other vertices whose
positions ranging from close to an intermediate distance. We
also notice that the closest vertices are the more significant
when building the network. Even if we choose the same
number of thresholds (Sets 2 and 3), there is a substantial
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TABLE III
BEST RESULTS AND THEIR RESPECTIVE CONFIGURATIONS

Histogram features # of descriptors Success rate (%)

k Fy, Set1 Set4 Set7 | Setl Set4  Set 7
290 | mean, energy and smoothness 75 39 27 66.32 68.16 70.79
306 | mean, energy, entropy and smoothness 100 52 36 69.21 6895 70.53
418 | mean, variance, energy and smoothness 100 52 36 66.32 67.63 7053
432 | mean, variance, energy and entropy 100 52 36 69.47 70.26  70.00
464 | mean, variance, contrast and entropy 100 52 36 68.16 70.26  69.21
434 | mean, variance, energy, entropy and smoothness 125 65 45 68.95 69.21  70.79
496 | mean, variance, contrast, energy and entropy 125 65 45 69.74 70.79 69.74
498 | mean, variance, contrast, energy, entropy and smoothness 150 78 54 69.21 70.00 70.53

TABLE I
RESULTS ACHIEVED FOR DIFFERENT SETS OF THRESHOLDS WHEN USING
ONLY THE ENERGY OF THE HISTOGRAM.

Set Initial Increment Final No of Success
# term (o) (tine) term (tn)  thresholds (n)  rate (%)
1 0.020 0.020 0.500 25 60.26
2 0.260 0.020 0.740 25 55.26
3 0.500 0.020 0.980 25 48.42
4 0.020 0.040 0.500 13 59.74
5 0.260 0.040 0.740 13 53.68
[§ 0.500 0.040 0.980 13 49.47
7 0.020 0.060 0.500 9 58.95
8 0.260 0.060 0.740 9 54.21
9 0.500 0.060 0.980 9 50.79

0 50 100 150 200 250 300 350 400 450 500

Success rate (%)

Il Il Il 1 1 Il Il
0 50 100 150 200 250 300 350 400 450 500
Features set (F))

Fig. 2. Success rate yielded for different sets of histogram features for
different thresholds sets from Table II: (a) Set 1, t;n. = 0.020; (b) Set
4, tine = 0.040; (c) Set 7, tine = 0.060.

drop in the success rate if the smaller threshold values are
unconsidered.

We also evaluated the impact of the number of thresholds
by controlling the increment between them (Table II). As
we increase the increment between thresholds, there is a
slight decrease in the success rate. Set 4 (59.74%) and Set 7
(58.95%) present, respectively, success rates 0.52% and 1.31%
inferior in comparison to Set 1. However, while Set 1 uses
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25 thresholds, Set 4 and Set 7 uses, respectively, 13 and 9
threshold values. As one can see, the decrease in the success
rate is tolerable if we consider the amount of thresholds used.

TABLE IV
COMPARISON OF THE SUCCESS RATES FOR DIFFERENT SHAPE
DESCRIPTORS.

# of Objects correctly ~ Success
Method descriptors classified rate(%)
3D shape histogram [8] 640 165 43.42
Shape distribution [7] 99 256 67.37
Proposed approach 27 269 70.79

One could argument that this small variation in the success
rate is just perceived when using the energy of the histogram
as a descriptor, i.e., for other sets of histogram features Fj
the variation in the success rate would be much larger as we
increase the increment between thresholds. In order to address
this issue, we evaluated all possible sets of histogram features
Fp, k= 1,...,511, for the three values of increment used,
as shown in Figure 2. In fact, we notice there are variations
among the results of the three thresholds sets. However, these
variations in results are small as the resulting curves present
roughly the same aspect.

Moreover, we also notice that for some combinations of
descriptors the success rate increases as we decrease the num-
ber of thresholds. To illustrate that, we selected and compared
some of the best results and their respective configurations
(threshold set and histogram features), as shown in Table III.
In this table, the number of descriptors is given as the “number
of histogram features” times “the number of thresholds™ in the
respective set. In general, the use of fewer thresholds achieves
a better success rate, which occurs when we increase the
increment between them. This indicates that threshold values
close to each other may be generating complex networks too
similar in terms of properties. The addition of properties too
similar to the feature vector acts negatively in the performance,
slightly diminishing the success rate.

In Table IV we show success rates yielded for the pro-
posed and the compared approaches. For our approach, we
considered the following set of parameters: threshold Set 7
(to = 0.020, t;n. = 0.060 and t,, = 0.500) and three
histogram features (mean, energy and smoothness). In this
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experiment, results of our approach surpasses the compared
methods. Moreover, ours use a smaller set of descriptors,
thus proving to be more robust in the discrimination and
classification of the 3D shape objects evaluated. In addition
to this, we must emphasize that due to the use of Euclidean
distance in the computation of the complex network, our
approach is invariant to rotation.

On the compared approaches, the good performance of
the shape distribution method [7] is explained for two rea-
sons: is also uses Euclidean distance to compute the shape
function, and the distances are computed between pairs of
randomly selected points, which makes it insensitive to small
perturbations (e.g., articulation). The inability of 3D shape
histogram method [8] to accurately discriminate objects is
explained mostly by the presence of articulation. Even though
this method normalizes the 3D shape to achieve rotation
invariance, articulation and other small variations disturb how
the histogram’s bins are mapped, making two similar models
different in their histogram representation.

VI. CONCLUSION

In this paper, we proposed a novel approach to discriminate
3D models based on complex network theory. We investigated
how a 3D shape object can be effectively represented as
a complex network and how the degree based topological
properties provide a feasible set of attributes to characterize
and analyze the original object.

We performed an experimental evaluation of our approach
using a 3D model data set [26]. We also compared ours with
two other methods found in literature: 3D Shape Histograms
and Shape Distributions. Results show that our method is
able to discriminate different 3D shape objects, significantly
surpassing the compared approaches.

For future work, we plan to improve our experimental setup
by using a larger data set (e.g., The Princeton Shape Bench-
mark [28]) and include other 3D shape analysis methods.
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