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Abstract—We present a phase-sensitive speech enhancement
algorithm based on a Kalman filter estimator that tracks speech
and noise in the logarithmic Bark power spectral domain. With
modulation-domain Kalman filtering, the algorithm tracks the
speech spectral log-power using perceptually-motivated Bark
bands. By combining STFT bins into Bark bands, the number of
frequency components is reduced. The Kalman filter prediction
step separately models the inter-frame relations of the speech
and noise spectral log-powers and the Kalman filter update step
models the nonlinear relations between the speech and noise
spectral log-powers using the phase factor in Bark bands, which
follows a sub-Gaussian distribution. The posterior mean of the
speech spectral log-power is used to create an enhanced speech
spectrum for signal reconstruction. The algorithm is evaluated
in terms of speech quality and computational complexity with
different algorithm configurations compared on various noise
types. The algorithm implemented in Bark bands is compared to
algorithms implemented in STFT bins and experimental results
show that tracking speech in the log Bark power spectral domain,
taking into account the temporal dynamics of each subband
envelope, is beneficial. Regarding the computational complexity,
the percentage decrease in the real-time factor is 44% when using
Bark bands compared to when using STFT bins.

Index Terms—Speech enhancement, phase-sensitive observa-
tion model, phase factor, Bark bands, Kalman filter

I. INTRODUCTION

Single-channel speech enhancement in non-stationary noise
environments remains a challenging task. In the Short-Time
Fourier Transform (STFT) time-frequency domain, inter-frame
speech correlation exists and modulation-domain Kalman fil-
tering refers to imposing temporal constraints on spectra such
as the amplitude spectrum, [1], the power spectrum or the log-
power spectrum. Due to noise, the temporal characteristics of
the trajectories of the speech amplitude spectrum are distorted.
Enhancement algorithms can benefit from modeling inter-
frame speech correlation with a Kalman filter (KF) with a
state of low dimension and a number of authors have found
that the performance of a speech enhancer can be improved
by using modulation-domain Kalman filtering, [1], [2], [3].

Modulation-domain Kalman filtering operates in a spectral
time-frequency domain and changes the modulation spectrum.
Inter-frame speech correlation modeling with a KF has been
addressed in [4] [5]. Modulation-domain Kalman filtering, [2],
is different from Kalman filtering in the time domain, [6].

In this paper, we present a phase-sensitive enhancement
algorithm based on a KF that estimates speech and noise in
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the low-dimensional logarithmic Bark power spectral domain.
By exploiting the temporal dynamics of speech, we track the
evolution of the speech spectral log-power in each Bark-spaced
frequency band. We use inter-frame linear and nonlinear rela-
tionships for the KF prediction and update steps, respectively.
The nonlinear KF update step models the phase factor, [7], i.e.
the cosine of the phase difference between speech and noise, in
order to use that speech and noise are additive in the complex
STFT domain. We approximate the posterior of the speech
and noise spectral log-powers as a two-dimensional Gaussian
distribution with a full covariance matrix using the probability
distribution of the phase factor in Bark bands. The phase-
sensitive KF update step computes the first two moments of
the posterior distribution, [8], [9], thus suppressing noise.

As a main contribution, we create a phase-sensitive Kalman
filtering algorithm to track speech and noise in the logarithmic
Bark power spectral domain. We extend the speech enhancer
in [7] to work in Bark bands and we take into account the
phase factor in Bark bands using time-varying frequency-
dependent weighted sigma points for its sub-Gaussian distribu-
tion, [10]. The modulation-domain Kalman filtering algorithm
uses perceptually-motivated Bark bands that take into account
the ear resolution. The use of low-dimensional Bark bands,
instead of STFT bins, reduces the computational complexity
of the KF algorithm in [7] and improves the speech quality.

II. THE SPEECH ENHANCEMENT ALGORITHM

The flowchart of the KF-based enhancement algorithm is
shown in Fig. 1. The input of the algorithm is the noisy speech
in the time domain. The algorithm’s first step is to perform
the STFT and to obtain both the noisy spectral amplitude, |Y|,
and the noisy phase, 6. Next, the algorithm performs three
different actions. First, it performs speech amplitude spectrum
pre-cleaning and estimates an autoregressive (AR) model of
order p for the spectral log Bark power of speech. Second,
the algorithm performs noise amplitude spectrum pre-cleaning,
using voice activity detection, and estimates an AR model
of order ¢ for the spectral log Bark power of noise. Third,
the algorithm performs modulation-domain Kalman filtering
for every Bark-spaced frequency band. For the modulation-
domain KF, the observation is the spectral log Bark power of
noisy speech. The KF state is the spectral log Bark power of
speech together with the spectral log Bark power of noise.
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According to Fig. 1, the noisy amplitude spectrum is used
in two ways: (a) it is converted to the spectral log Bark power
domain and used as the KF observation, and (b) it is pre-
cleaned, [8], and used for speech and noise AR(p) and AR(q)
modeling respectively in the spectral log Bark power domain.
Speech amplitude spectrum pre-cleaning is used because the
algorithm’s input is the noisy speech signal and we want to
perform AR modeling on the speech signal. For the same
reasons as for speech, noise pre-cleaning is also performed.

The main part of the algorithm is the KF. The modulation-
domain Kalman filtering algorithm performs a nonlinear
phase-sensitive KF update step to track the spectral log Bark
power of speech. In the end, using the enhanced speech STFT
amplitude spectrum, the algorithm performs the inverse STFT
(ISTFT) to obtain the speech signal in the time domain.

A. Signal model and Bark bands
In the complex STFT domain, the noisy speech is given by

Y, (k)| 2®) = | X, (k)| ?2®) 4+ |Ny(k)| 7P ™) (1)

where the time-frame index is denoted by t and the STFT
frequency bin index by k for 1 < k < K. The spectral
amplitudes of the noisy speech, clean speech and noise are
respectively denoted by |Y:(k)|, and |N:(k)| while
the corresponding phases are 0;(k), ¢:(k) and ¢ (k).

The phase factor in STFT bins, ag, is given by aj =
cos(p(k)—1(k)), as in [9], [7] and [8]. For clarity, we omit the
time-frame index, t, below and we only include it in equations
involving multiple frames. We use the Bark band index, [, for
1<I<L,1<k<Kand K > L. A filterbank comprising
triangular filters, which are similar to those used for Mel bands
in [11] and [12], is used to transform the power spectrum of
each frame from a number of STFT bins, K, to a reduced
number of Bark subbands, L. The noisy speech in the log
Bark power spectral domain, y(1), is given by

K
y(1) = log (Z Wi IY(k)I2> )

k=1

where W}, ; are the overlapping triangular filter weights used
to go to the Bark power spectral domain, [13]. The speech
and the noise in the log Bark power spectral domain, x (1) and
n(l), are defined similarly to (2), using |X (k)| and |N(k)|.

Considering the relation between noisy speech, speech and
noise in the logarithmic Bark power spectral domain, [10], and
using [ and y,  and n, the nonlinear distortion equation in
the logarithmic Bark power spectral domain is given by

y(l) = log (ez(l) + eV 426 x eo's(z(l)"’"(l))) 3)

where (; is the Bark phase factor. This f3; is given by

Zkal\X( N (k)| ok
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Figure 1. The flowchart diagram of the KF-based enhancement algorithm that
tracks and estimates speech in the logarithmic Bark power spectral domain.
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Figure 2. The flowchart diagram shows how spectral amplitude estimation is
performed using Bark-spaced frequency bands, as explained in Sec. I1.B.

where (3; follows a sub-Gaussian distribution, [10]. The phase
factor in STFT bins, oy, follows the arcsine distribution

1
_ if |ag| <1
Tx\/1—aj o (6)

0 otherwise.

Jou(an) =

X (k)| and |N(k)| are assumed constant within a
Bark band. Here, the two cases, listing them with increasing
complexity, are: (a) assume |X (k)| and |N (k)| are constant
within a Bark band, and (b) make no assumptions and use
|X (k)| and |N(k)|. Using (b), from (4) and (5), we obtain

E{8?} —05chl,E{ﬁl}—3E{ﬁl —0375chl
E {8} —1252%—5625@{@}chl+15E{55}

and the odd moments of /3; are zero. The latter equation for the
sixth moment, E{ Blﬁ}, is not included in [10] and is computed
using the relation between cumulants and moments, [14].

B. Spectral amplitude estimation using Bark bands

Figure 2 depicts how speech spectral log-power tracking is
performed in Bark bands. The “Bark” block in the flowchart
diagram in Fig. 1 converts the STFT power spectral domain to
the Bark power spectral domain using (2). The “IBark” block
in Fig. 1 performs an inverse Bark (IBark) operation to go
from Bark bands to STFT bins for the amplitude spectrum.

As shown in Fig. 2, the algorithm first performs the STFT,
then goes to the power spectral domain, to the Bark power
spectral domain and to the log Bark power spectral domain.
The KF operates in the log Bark power spectral domain. Using
the noisy spectral power and the exponential of the KF output,
a gain is computed. To map a number of Bark bands onto a
larger number of STFT bins, linear interpolation in frequency
is performed on the gain to impose a smoothness constraint.
The gain in a STFT bin is a weighted average of the gains in
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the Bark bands whose centre frequencies are either side of it
and the weights are inversely proportional to the differences
between the Bark band and the STFT bin centre frequencies.

C. The KF state and the KF prediction step

The KF state consists of the speech KF state, x;, and the
noise KF state, XE"). The speech KF prediction step uses the
equations in (7), [7]. The speech KF transition matrix from
speech AR modeling of order p is A, the speech KF transition
noise covariance matrix is Q, and the speech KF transition
noise, which is zero-mean with covariance matrix Q,, is w;.

Xep1 = Axg +we (7)
w; € RP Q, € RPXP

T
Xy = (Jit Ti—1 --- It7p+1) ,
X € §Rp’ At S §Rp><p7

In (7), A; and Q, are found from AR modeling on the pre-
cleaned speech, [7]. As in (7), noise tracking based on AR(q)
modeling is performed for xim =(ning—1 .. nu—qr1) T, [7].

D. The phase-sensitive KF update step

The KF update step computes the first two moments of
the posterior distribution of speech and noise in the log Bark
power spectral domain. As shown in Fig. 1, decorrelation is
performed before the KF update using B € RPHOx(r+a) 45
in [8] and [3]. Decorrelation and recorrelation are performed
before and after the nonlinear KF update step, respectively.

The KF update step uses the equations presented in [7]
and [9] but utilises the Bark phase factor, ;, instead of the
phase factor, ay, and the log Bark power spectral domain
instead of the log-power spectral domain. The algorithm tracks
speech and noise using correlated priors in the log Bark power
spectral domain. The KF update considers the two-dimensional
Gaussian prior for speech and noise from the KF prediction
step, the distribution of 3; from Sec. II.A and the observation
constraint surface in the three-dimensional space (z,n, 5;).

The nonlinear distortion equation is given by (3). To calcu-
late the posterior, we need to obtain the conditional distribution
of (x,n, ;) subject to the observation constraint, y. Apply-
ing the observation constraint reduces the dimension of the
distribution from three to two. To impose this constraint, we
make a transformation of variables from (z,n, 8;) to (u, y, 8;).
Since the transformed parameterization includes vy, it becomes
straightforward to impose the constraint. For 0 < a + b < 2,
using u =n—x, x = z(u,y, f;) and n = n(u,y, fi), the first
two moments of the posterior of (z,n) are computed using

apb apb du d
E {z°n Iy}a/ﬁp(ﬁz)/u zn® p(x,n) du df;  (8)

where the outer integration over the Bark phase factor, 3,
is performed using G sigma points. E{S7} for z € Z>, as
computed in Sec. II.A, is needed for the sigma points, [7].

E. Discussion of the KF algorithm

We denote the presented KF algorithm by BSNT to indicate
Bark speech and noise tracking. We denote the speech tracking
algorithm implemented in Bark bands by BST, which is a
simpler version of the BSNT algorithm. We note that BST does
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Figure 3. Boxplots of APESQ scores at SNRs from 0 dB to 30 dB for: (a)
white noise, (b) babble noise, (c) F16 noise, and (d) factory noise.

not track the log Bark power spectrum of noise. BSNT and
BST use the correct sub-Gaussian distribution for the phase
factor in Bark bands, (3;, [10], as described in Sec. II.A. The
sigma points for 8; in BSNT and BST change in every time-
frequency cell and depend on estimates of | X (k)| and | N (k)|,
using ¢, ; in (5). BSNT and BST do not assume that | X (k)|
and |N (k)| are constant within each Bark band and use time-
varying and frequency-dependent sigma points and weights.
The BSNT and BST algorithms compute the first moments
of the sub-Gaussian distribution for the phase factor in Bark
bands, (3, in every time-frequency cell. This approach differs
from the offline-training approach that is followed in [15]
[16], where Gaussian distributions are used to model the phase
factor in Mel bands invoking the central limit theorem.

III. IMPLEMENTATION, RESULTS AND EVALUATION

We use 32 ms acoustic frames, an 8 ms acoustic frame hop,
64 ms modulation frames and an 8 ms modulation frame hop.
In Fig. 1, for speech amplitude spectrum pre-cleaning, we use
the Log-MMSE estimator, [17], [13]. The KF state dimensions
for speech and noise in Sec. II.C are respectively p = 2 and
q = 2. We use the external noise estimator from [18], [13]. In
Sec. I.LD, G = 3 sigma points are utilised, as in [7] [8].

For evaluation, the TIMIT database [19], sampled at 16 kHz,
and the RSG-10 noise database [20] are used. From the TIMIT
core test set, 50 speech utterances are chosen. The proposed
BSNT algorithm is examined at SNRs from 0 to 30 dB.

Contrary to expectations, there is no penalty in speech
quality when using Bark bands. The tradeoff between com-
putational complexity and speech quality is not apparent. The
use of low-dimensional Bark bands, instead of STFT bins,
reduces the computational complexity of the KF algorithm
that jointly tracks the speech and noise spectral log-powers
and also improves the speech quality. The frequency precision
is higher when using STFT bins than when using Bark bands;
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Figure 4. (a) APESQ and (b) APESQ relative to BSNT averaged over the
noise types of white, babble, F16 and factory when the noisy PESQ is 2.8.
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Figure 5. Boxplots of ASegSNR scores at SNRs from 0 dB to 30 dB for:
(a) white noise, (b) babble noise, (c) F16 noise, and (d) factory noise.

— BSNT

o o N ® ©

ASegSNR (dB)

ASegSNR (dB)
9
=

o - m w
n

nevertheless, the algorithm implemented in Bark bands has
comparable to and/or better speech quality results than the
algorithm implemented in STFT bins. In terms of the real-
time factor, R, the computational complexity of the proposed
algorithm is lower with Bark bands than with STFT bins.
When the STFT length is 512, we use 20 Bark bands instead
of 257 STFT bins. According to our implementation using
parallel computation for processing frequency components in
parallel, using two cores, the real-time factor is R = 16 for
the STFT-bin-based algorithm while R = 9 for the Bark-band-
based algorithm. The percentage decrease in R is 44% when
using Bark bands compared to when using STFT bins.

We denote the speech tracking (ST) algorithm from [7] by
ST and the speech and noise tracking (SNT) algorithm from
[7] by SNT. We compare the presented BSNT algorithm with
the BST, SNT and ST KF baselines in terms of speech quality
with the perceptual evaluation of speech quality (PESQ), [21],
the segmental SNR (SegSNR) and the short-time objective
intelligibility (STOI), [22], metrics. We compare the Bark and
the full STFT implementations of the different algorithms.

We also compare the proposed KF-based BSNT algorithm
with the non-KF baselines: (a) the Log-MMSE log-spectral
amplitude (LSA) estimator, [17], implemented with the MMSE
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Figure 6. Boxplots of ASTOI scores at SNRs from 0 dB to 30 dB for: (a)
white noise, (b) babble noise, (c) F16 noise, and (d) factory noise.

noise estimator, [18], with (b) the optimally modified LSA
(OMLSA) estimator, [23], implemented with the improved
minima controlled recursive averaging (IMCRA) noise esti-
mator, [24], and with (c) the perceptually-motivated MMSE
(pMMSE) estimator from [25], as implemented in [13], using
weighted Euclidean distortion with a power exponent of —1.

Figure 3 shows the PESQ improvement, APESQ, for the
presented BSNT algorithm, the non-KF baselines, OMLSA,
pMMSE and LSA, and the KF baselines, BST, SNT and ST,
for the noise types of white, babble, F16 and factory. The
boxplots show the median and the inter-quartile range, as well
as the 5% and 95% points of the distribution, of APESQ. The
ordering of the legends matches that of the plots at high SNRs.
According to Figs. 3(a)-3(d), the BSNT algorithm consistently
improves the PESQ metric, approximately 0.14 on average
compared to the non-KF baselines for all the examined SNRs
and noise types. The BSNT algorithm consistently improves
the PESQ metric at most SNRs compared to the ST and
SNT algorithms, depending on the noise type. For middle
SNRs, compared to the unprocessed speech signal, the PESQ
improvement of BSNT is approximately 1.2 for white noise,
0.6 for babble and factory noises and 0.7 for F16 noise.

To examine the performance over a range of noise types, we
evaluate the algorithms in Fig. 4(a) using the four examined
noise types of white, babble, F16 and factory with the average
SNR for each noise type chosen to give a mean PESQ score of
3.0 for the noisy speech. Compared to the unprocessed speech
signal, Fig. 4(a) shows that the BSNT algorithm achieves a
PESQ improvement of 0.62, while LSA and pMMSE achieve
a PESQ improvement of approximately 0.4. OMLSA has a
PESQ improvement of about 0.5, ST and SNT achieve a PESQ
improvement of 0.5 and BST has a PESQ improvement of
0.55. According to Fig. 4(b), the BSNT algorithm has a higher
PESQ improvement of approximately 0.22 compared to the
LSA and pMMSE baselines, of 0.12 compared to OMLSA,
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of 0.1 compared to ST and SNT and of 0.05 compared to
BST. According to Figs. 4(a) and 4(b), considering speech
and noise combinations that have a raw PESQ of 3.0, there is
a consistent benefit in APESQ when using Bark bands.
Figure 5 shows the SegSNR improvement, ASegSNR, of the
presented BSNT algorithm compared to the non-KF baselines,
LSA and pMMSE, and to the KF baselines, BST, SNT and
ST. The BSNT algorithm has a consistently improved SegSNR
compared to the non-KF baselines for all the examined noise
types. BSNT achieves higher ASegSNR scores for white and
babble noises, and smaller for F16 and factory noises. For most
SNRs and noise types, the BSNT algorithm has a consistently
improved SegSNR score compared to the KF baselines.
Figure 6 depicts the STOI improvement, ASTOI, of the
presented BSNT algorithm and the non-KF and KF baselines.
The BSNT algorithm shows marginal STOI improvements.
To sum up, with log-spectrum modulation-domain Kalman
filtering in Bark bands, we reduce the computational complex-
ity of the KF algorithm and also achieve better speech quality
performance, while preserving intelligibility. The use of low-
dimensional Bark bands, instead of STFT bins, reduces the
frequency components of the KF algorithm in [7]. Performing
temporal dynamics tracking in the log Bark power spectral
domain is beneficial for enhancement and the Bark-band-based
KF algorithm shows better speech quality results compared to
KF baselines that are implemented in STFT bins. For a per-
ceptual comparison, the reader is referred to [26] where some
recordings processed by the BSNT algorithm are available.

IV. CONCLUSION

In this paper, we present a phase-sensitive enhancement
algorithm based on modulation-domain Kalman filtering in
the log Bark power spectral domain. The algorithm jointly
tracks speech and noise using a KF estimator that operates
in the low-dimensional log Bark power spectral domain. By
combining STFT bins into Bark bands, we reduce the number
of frequency components. The use of Bark bands, instead of
STFT bins, speeds up the algorithm. The nonlinear KF update
step models the effect of noise on the speech spectral log-
power using the distribution of the phase factor in Bark bands.
Experimental results show that tracking speech in the log
Bark power spectral domain, taking into account the temporal
dynamics of each Bark subband envelope, is beneficial.
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