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Abstract—This paper considers the problem of sparse signal
reconstruction from the timing of its Level Crossings (LC)s. We
formulate the sparse Zero Crossing (ZC) reconstruction problem
in terms of a single 1-bit Compressive Sensing (CS) model.
We also extend the Smoothed L0 (SL0) sparse reconstruction
algorithm to the 1-bit CS framework and propose the Binary
SL0 (BSL0) algorithm for iterative reconstruction of the sparse
signal from ZCs in cases where the number of sparse coefficients
is not known to the reconstruction algorithm a priori. Similar to
the ZC case, we propose a system of simultaneously constrained
signed-CS problems to reconstruct a sparse signal from its
Level Crossings (LC)s and modify both the Binary Iterative
Hard Thresholding (BIHT) and BSL0 algorithms to solve this
problem. Simulation results demonstrate superior performance
of the proposed LC reconstruction techniques in comparison with
the literature.

I. INTRODUCTION

Uniform sampling is a popular strategy in the conventional
Analog to Digital (A/D) converters. However, an alternative
technique could be Level Crossing (LC) sampling [1–4] which
samples the input analog signal whenever its amplitude crosses
any of a predefined set of reference levels. LC based A/Ds
represent each LC by encoding its quantized time instance
along with an additional bit that represents the value of the
level crossed at that time instant [2].

LC sampling generates signal-dependent non-uniform sam-
ples and benefits from certain appealing properties in com-
parison with the conventional uniform sampling technique.
It reduces the number of samples by automatically adapting
the sampling density to the local spectral properties of the
signal [5, 6]. Furthermore, LC based A/Ds can be implemented
asynchronously and without a global clock. This in turn leads
to reduced power consumption, heating and electromagnetic
interference [7].

A seminal work by Logan [8] showed that signals with
octave-band Fourier spectra can be uniquely reconstructed
from their zero crossings up to a scale factor. This is a
sufficient but not necessary condition for LC signal reconstruc-
tion. Previous works on LC signal reconstruction have mostly
considered low [9, 10] or band pass [8] signal assumption
and there are few prior works that utilize sparsity [11–13].
Boufounos et. al. [12] formulates the zero crossing reconstruc-
tion problem as minimization of a sparsity inducing cost func-
tion on the unit sphere and Sharma et. al. [11] uses the Basis

Pursuit (BP) and Orthogonal Matching Pursuit (OMP) [14]
techniques to reconstruct the signal from LC samples. Both
[11, 12] formulate the LC reconstruction problem in terms of
a conventional Compressive Sensing (CS) [15] reconstruction
model.

In this work, we utilize the emergent theory of 1-bit CS
[16, 17] to formulate the LC problem. We show how the LC
problem can be addressed by a system of simultaneously con-
strained signed-CS problems and modify the Binary Iterative
Hard Thresholding (BIHT) and Binary Smoothed L0 (BSL0)
algorithms to solve this problem.

For further reproduction of the results reported
in this paper, MATLAB files are provided online at
ee.sharif.edu/∼boloursaz.

The rest of this paper is organized as follows. In section II
we formulate the LC problem in terms of 1-bit CS models.
Section III presents the proposed BSL0 and the modified BIHT
and BSL0 algorithms. Section IV provides the simulation
results and finally section V concludes the paper.

II. PROBLEM FORMULATION

In this section, we formulate the problem of sparse signal
reconstruction from level crossings and address the similarities
and differences between this problem and a typical 1-bit CS
problem.

A. Zero Crossing (ZC) Reconstruction

Suppose x(t) =
∑N
n=0 an cos(nω0t), for t ∈ [0, d]. Also

define the spectral support as S = {n|an 6= 0}. Now, the
sparse signal assumption imposes that K = |S| << N . Also
denote by x[m] = x(mT ),m = 0, 1, ...,M − 1 the uniform
samples taken from x(t) at rate 1/T << Nω0/π significantly
below Nyquist in which (M − 1)T = d. It is obvious that
a ZC-based A/D can extract y(t) = sign(x(t)) from the ZC
time instances and the initial sign of x(t). Hence, we have
y[m] = sign(x[m]). Now in vector notation we can write (1)

y = sign(x) = sign(Φa), (1)

in which, the vector xM×1 = [x[0] x[1] ... x[M−1]]T contains
the uniform samples and yM×1 = [y[0] y[1] ... y[M−1]]T con-
tains the corresponding sign values. The vector a(N+1)×1 =
[a0 a1 ... aN ]T contains the sparse coefficients and
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ΦM×(N+1) =

 1
...
1

cos(2ω0T ) . . . cos(Nω0T )
...

. . .
...

cos(2ω0MT ) · · · cos(Nω0MT )

 .

Note that in (1), we need to estimate the sparse coefficient
vector a from the sign measurements y. Of course, reconstruc-
tion is only possible up to a scale factor. Hence, we need to
add the norm constraint ||a||2 = 1 which yields a typical 1-bit
CS problem that can be solved by the Binary Iterative Hard
Thresholding (BIHT) [17], Restricted Step Shrinkage (RSS)
[18], 1-bit Bayesian Compressive Sensing [19] or any other
1-bit CS reconstruction algorithm. Once a is estimated, the
sparse analog signal x(t) is estimated at infinite accuracy.

min
a
‖a‖0 s.t. y = sign(Φa), ‖a‖2 = 1. (2)

B. Level Crossing (LC) Reconstruction

Now consider the multi-level scenario in which the temporal
instances of the signal crossings with a predefined set of
reference levels is encoded and transmitted to the receiver.
Lets denote the set of levels by L = {l−L/2, ..., l0, ..., lL/2}.
Extending our notation to the multi-level scenario, we can
write (3)

yL/2 = sign(x− lL/2) = sign(Φa− lL/2) (3)
...

y−L/2 = sign(x− l−L/2) = sign(Φa− l−L/2),

in which the vectors x and a and the matrix Φ are
the same as defined in subsection II-A and the vectors
y−L/2, ..., y0, ..., yL/2 contain the corresponding sign values.
Now in order to solve the above system of signed-CS problems
simultaneously, we define the vector y′ as (4)

y′ =

 yL/2
...
y−L/2

 = sign(Φ′a′), (4)

in which Φ′(M(L+1))×(N+L+2) is made by concatenation of
the Φ matrices and the level vectors according to (5)

Φ′ =


Φ lL/21M . . . 0M . . . 0M

...
...

Φ 0M . . . l01M . . . 0M
...

...
Φ 0M . . . 0M . . . l−L/21M

 . (5)

In (5), 1M and 0M are column vectors with all entries equal
to 1 and 0 respectively. Hence, to estimate the sparse vector
of coefficients a, we need to solve the constrained signed-CS
problem (6) in which a′p:q is the sub-vector containing the
elements p to q of the vector a′.

min
a′
‖a′‖0 s.t. y′ = sign(Φ′a′), a′N+2:N+L+2 = −1L+1.

(6)

In section (III), we propose efficient algorithms to solve (6).

III. THE PROPOSED ALGORITHMS

In this section, we present our proposed algorithms. In
subsection III-A we present the Binary Smoothed L0 (BSL0)
algorithm proposed for solving the 1-bit CS problem in section
II-A in case where the sparsity number K is not known for
reconstruction. Subsequently in subsection III-B, we present
our proposed algorithms for solving the sparse LC problem
(6).

A. The Binary Smoothed L0 (BSL0) Algorithm

The proposed Binary Smoothed L0 (BSL0) algorithm falls
within the group of 1-bit reconstruction algorithms that do
not require prior knowledge of the sparsity number K for
reconstruction e.g. [16, 18, 20–22]. Note that although the
simulation results for BSL0 are provided for the ZC/LC
scenario in this paper, the algorithm is also applicable to the
general scenario of 1-bit CS.

The basic SL0 algorithm was proposed in [23], for finding
sparse solutions to under-determined systems of linear equa-
tions. The main idea of SL0 is to apply the Graduated Non-
Convexity (GNC) technique and approximate the discontinu-
ous l0 norm by a sequence of continuous functions to enable
using continuous minimization techniques. We apply the same
idea and solve the following problem iteratively (7)

min
a

Cσ,λ,θ(a) = Fσ(a) + λJ(a) + θ(‖a‖22 − 1)2 , (7)

in which J(a) = ‖[Y (Φa)]−‖1, Y = diag(y) and [.]− denotes
the negative function, i.e., ([a]−)i = [ai]− with [ai]− = ai if
ai < 0 and 0 else. Also, we have lim

σ→0+
Fσ(a) = ‖a‖0.

Note that the first term of the cost function (Fσ(a)) enforces
sparsity, the second term (J(a)) enforces consistency of the
solution to the set of sign measurements and ((‖a‖22 − 1)2)
enforces the final solution to be located on the unit sphere to
avoid scaling ambiguity. The idea is to decrease σ along the
iterations to better approximate the l0-norm while increasing
λ and θ to enforce the sign and norm constraints.

The proposed BSL0 algorithm takes a dual loop approach
to solve (7). Similar to the basic SL0 [23], the inner loop is
a Gradient Descent algorithm that is applied on the sequence
of cost functions Cσ0,λj ,θj (a), Cσ1,λj ,θj (a), ..., Cσk,λj ,θj (a),
where σi = ασi−1, 0 < α < 1. In each iteration of the outer
loop, the λ, θ parameters are increased by λj = βλj−1 and
θj = δθj−1 where 1 < β, δ.

As stated in [23], there exists several different choices
for the l0-norm approximation function (Fσ(a)) and in this
research, we assume Fσ(a) =

∑N
m=0(1 − exp(−a2m/σ2)).

Hence, considering a set of fixed parameters (σ, λ, θ) for the
inner gradient descent algorithm we have (8)
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∇Cσ,λ,θ(a) =
2

σ2


e−a

2
0/σ

2

0 . . . 0

0 e−a
2
1/σ

2

. . . 0
...

...
...

...
0 . . . 0 e−a

2
N/σ

2

a

+
λ

2
ΦT (sign(Φa)− y) + 4θ((||a||22 − 1))a. (8)

Precisely speaking, (8) is in fact a sub-gradient of the cost
function because the second term (λ2 ΦT (sign(Φa) − y)) is a
sub-gradient of λJ(a) as proved in [17]. Algorithm 1 gives
the formal presentation of the proposed BSL0 algorithm.

B. The Sparse LC Problem

It is obvious that the only difference between the sparse
ZC model and the sparse LC model (6) is the constraint on
the sparse coefficient vector a′. Also note that C = {a′ ∈
RN+L+2 |a′N+2:N+L+2 = (−1)(L+1)×1} the set of all real
vectors with last L+ 1 entries equal to −1 is convex. Hence,
to enforce this constraint, we can simply project the solution
onto C at each iteration. As C is convex, this projection will
not hamper convergence of the overall iterative algorithm.

For the modified BSL0 we solve (9)

min
a′

Fσ(a′) + λJ(a′) s.t. a′N+2:N+L+2 = −1L+1. (9)

To solve (9), we only need to omit the last term in the
gradient value (8) and enforce the constraint a′N+2:N+L+2 =
−1L+1 in each iteration of Algorithm 1.

For the scenarios in which K is known prior to reconstruc-
tion, the modified BIHT algorithm solves (10). Each iteration
of the modified BIHT is composed of a Gradient Descent (GD)
step followed by projection both onto C and the K-sparse
signal space.

min
a′

‖[Y (Φ′a′)]−‖1
s.t.

‖a′‖0 ≤ K
a′N+2:N+L+2 = −1L+1.

. (10)

IV. SIMULATION RESULTS

In this section we demonstrate efficient performance of the
proposed ZC/LC reconstruction algorithms on random sparse
signals generated according to the model presented in II-A and
provide comparisons with previous works.

A. ZC Reconstruction Performance by 1-Bit CS

Considering the sparse ZC problem addressed in subsection
II-A, fig. 1 compares the final reconstruction SNR values
achieved by the BIHT [17], 1-Bit Bayesian Compressive
Sensing (1-Bit BCS) [19], and the proposed BSL0 algorithms.
Note that the signal parameters are set as N = 500, d = 2
sec, T = 5× 10−4 sec, and ω0 = 10 rad/sec and the number
of iterations for all algorithms is 50. Also the BSL0 algorithm
parameters are set at (σ0, λ0, θ0) = (0.1, 2.5 × 10−4, 0.3),
(α, β, δ) = (0.9, 2, 2), ε = 0.0005, µ = 0.7, σmin = 0.001.

Algorithm 1 Stepwise Representation of Binary Smoothed L0

Inputs:
ΦM×(N+1): The sampling matrix
yM×1: The vector of sign measurements
ε: The stopping criteria
(σ0, λ0, θ0): The initial algorithm parameters
(α, β, δ): The parameter increase/decrease factors
IterMax: The maximum number of iterations
σmin: The minimum σ parameter allowed
µ: The step-size to the Gradient Descent (GD)

Output:
â(k): The estimated vector of sparse coefficients

Algorithm:
Initialization â(1) = 0N+1, â

(0) = −100× 1N+1, k = 1
i = j = 0

While (||â(k) − â(k−1)|| > ε) and (k < IterMax)
While (σi > σmin)

- Calculate the gradient ∇Cσi,λj ,θj (â(k)) (8)
- Perform the gradient descent (GD) step as:

â(k+1) = â(k) − µ∇Cσi,λj ,θj (â(k))
- σi+1 = ασi
- i = i+ 1
- k = k + 1

End While
λj = βλj−1

θj = δθj−1

i = 0
End While

Note that although 1-Bit BCS outperforms BIHT and BSL0
for less sparse signals, but its simulation time per iteration was
observed to exceed the other two at least by a factor of 10.

Fig. 1. ZC Reconstruction by Different 1-Bit CS Algorithms

B. LC Reconstruction Performance by Modified Signed-CS

Considering the sparse LC problem addressed in subsection
II-B, fig. 2 provides the final reconstruction SNR values
achieved by the modified BIHT and the modified BSL0
algorithms for different number of reference levels L. Note
that the signal and algorithm parameters are the same as IV-A
and the levels are placed uniformly in the dynamic range of
the input signal.
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C. Comparison with the Literature for Sparse Octave-Band
Signals

As both prior works on sparse ZC/LC reconstruction [11,
12] have considered octave-band signals for simulations, we
also report the simulation results for the same scenario for
the sake of comparisons. To this end, we limit the harmonics
to the interval n = 201, . . . , 400 and plot the probability of
successful recovery by (2) against the sparsity factor in fig.
3. Similar to the literature, the reconstruction SNR values
> 20dB are considered as successful recovery in this sim-
ulation. Note that this figure compares the performance of the
1-Bit CS approach to ZC reconstruction in this paper with
the conventional CS approach taken by [12, 13]. As observed
in this figure, migrating to the 1-Bit CS model improves
the reconstruction performance for sparser signals while the
conventional CS (i.e. [11, 12]) performs better as the sparsity
factor increases.

Fig. 2. LC Reconstruction SNR for a) Modified BIHT and b) Modified BSL0

V. CONCLUSION
In this paper, we have formulated the problem of sparse

signal reconstruction from its Level Crossings in terms of 1-
bit Compressive Sensing models. We have shown how the
LC problem can be addressed by a system of simultaneously
constrained signed-CS problems and modified the Binary
Iterative Hard Thresholding (BIHT) and Binary Smoothed L0
(BSL0) algorithms to solve this problem.
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