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Abstract—Distributed sensor data acquisition usually encom-
passes data sampling by the individual devices, where each of
them has its own oscillator driving the local sampling process,
resulting in slightly different sampling rates at the individual sen-
sor nodes. Nevertheless, for certain downstream signal processing
tasks it is important to compensate even for small sampling rate
offsets. Aligning the sampling rates of oscillators which differ
only by a few parts-per-million, is, however, challenging and quite
different from traditional multirate signal processing tasks.

In this paper we propose to transfer a precise but compu-
tationally demanding time domain approach, inspired by the
Nyquist-Shannon sampling theorem, to an efficient frequency
domain implementation. To this end a buffer control is employed

which compensates for sampling offsets which are multiples of
the sampling period, while a digital filter, realized by the well-
known Overlap-Save method, handles the fractional part of the
sampling phase offset. With experiments on artificially misaligned
data we investigate the parametrization, the efficiency, and the
induced distortions of the proposed resampling method. It is
shown that a favorable compromise between residual distortion
and computational complexity is achieved, compared to other
sampling rate offset compensation techniques.

Index Terms—Overlap-Save method, sampling rate offset,
resampling

I. INTRODUCTION

Sensor networks promise a flexible infrastructure for multi-

channel recording setups. Due to their distributed nature, the

devices a sensor network is comprised of usually lack a

common sampling clock. However, if each device has its own

oscillator, there will be unavoidable deviations in the sampling

frequencies, even if all devices sample at the same nominal

rate. The reasons are manufacturing differences between the

(crystal) clocks and environmental factors, such as the device

temperature, which affect the oscillator frequencies.

An often-cited example for distributed signal acquisition is

a Wireless Acoustic Sensor Networks (WASN), where each

sensor node hosts a single or an array of microphones and

where the nodes are connected via a wireless link. The spatial

diversity achievable by such a distributed sensor network

allows for superior signal extraction and multi-channel signal

processing compared to a single spatially compact microphone

array which is possibly located far away from the signals of

interest [1]. Since each device has its own oscillator driving

the A/D-converters the sampling rates at each node will be

slightly different and the signal streams will diverge over time.

This has a detrimental effect on various acoustic processing

algorithms, e.g., on source localization [2], beamforming [3]

or blind source separation [4], as described in the given

references.

Several solutions have been proposed to estimate such

sampling rate offsets. One option is to exchange time stamps

between the devices from which the offset can be estimated

[5], [6]. Alternatively the properties of the sampled acoustic

data streams are analyzed, from which estimates of the sam-

pling rate offsets can be obtained, e.g., by evaluating coherence

functions [7], [8] or correlations in the time [9] or frequency

domain [10].

In this contribution we are, however, not concerned with the

estimation of the offsets but with their compensation, i.e., with

adjusting the sampling rate of different devices to a common

value. The conceptually simplest solution is to use special

hardware components, such as tunable oscillators, to adjust

the sampling rates to the desired values, as proposed in [6].

However, in most scenarios the given hardware is unalterable

and does not include such a tunable device, which is why one

has to resort to software solutions.

Traditional digital-to-digital sampling rate conversion meth-

ods fail on the task of changing sampling rates, which differ

only by a few parts per million (ppm). They usually target

rational sampling rate conversion rates r = L/M where L and

M are small integer numbers [11]. As the maximum of the

two factors (L or M ) determines the width of the anti-aliasing

filter’s passband, a resampling by a few ppm will easily create

unrealizable filter constraints.

If signal processing speed and computational efficiency is

the major objective, simple interpolation schemes can be used,

e.g., linear, cubic or spline interpolation. However, these inter-

polators introduce frequency dependent distortions, which can

have a detrimental effect on the subsequent signal processing

tasks. A combination of upsampling and interpolation has

been proposed in [4], where the signal is first interpolated

by a factor of four and, subsequently, a fourth order Lagrange

polynomial is employed to calculate the interpolated values.

Here, the required low-pass filter in the first upsampling step

and the Lagrange interpolation limit the achievable precision.

The optimal interpolation solution is known from the

Nyquist-Shannon sampling theorem: The continuous-time sig-

nal is reconstructed from the discrete sequence of samples

by means of a sinc interpolation, and is resampled with

the desired sampling rate. However, the major drawback

of this approach is its computational inefficiency. For each

new sample the weighted sum of a fairly large number of
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sinc function values has to be calculated. Unfortunately, the

arguments at which the values of the sinc function are required

for the summation, is constantly changing, because a constant

difference in sampling rate leads to a linearly increasing (or

decreasing) sampling phase.

The popular Overlap-Save method (OSM) is a widely

used approach for handling computationally demanding sig-

nal processing steps efficiently in the frequency domain. Its

block-oriented processing is well prepared for handling both

streaming data and off-line data. It has been used in [12] for

resampling with rational factors (small L and M ). In [13],

the authors propose to use the OSM for multi-band mixing

and downsampling. That approach, however, requires the Fast

Fourier Transform (FFT) length to be an integer multiple of

the downsampling factor, which is an unrealistic assumption

in Sampling Rate Offset (SRO) compensation tasks.

In this paper we show how to combine the Overlap-

Save method with the signal reconstruction according to the

Nyquist-Shannon sampling theorem. Besides its suitability for

processing streaming data, we will show that it is scalable

in terms of precision and computational demands. Further

we show that it compares favorably with other time and

frequency domain interpolation techniques on artificially gen-

erated pseudo-noise data.

II. IDEAL SIGNAL RECONSTRUCTION

From the Nyquist-Shannon sampling theorem it is well-

known how to perfectly reconstruct a bandlimited signal from

its samples x(n): Applying an ideal low-pass filter to the

Fourier transform of the discrete time signal gives the Fourier

transform X(jω) of the continuous time signal:

X(jω) =

[
∞∑

n=−∞

x(n)e−jωnT

]

· T rect
( ω

2W

)

, (1)

where T is the time between two samples and W is the max-

imum occurring frequency in the signal x(t). The continuous

time signal x(t) is then recovered by inverse Fourier transform

x(t) = T
W

π

∞∑

n=−∞

x(n) sinc

(
W

π
(t− nT )

)

, (2)

with sinc(n) = sin(πn)/(πn). If we choose the sampling time

T = π/W , i.e., sampling with Nyquist rate, we can express

the time domain signal by

x(t) =

∞∑

n=−∞

x(n) sinc

(
t− nT

T

)

. (3)

This reconstructed signal can be sampled with any arbitrary

rate full-filling the Nyquist-Shannon sampling theorem.

III. RESAMPLING BY RECONSTRUCTION

Let us assume we have two sensor nodes, R and S, sampling

the same signal at slightly different sampling rates. We select

the sampling rate fS = 1/TS of node S to be the reference

sampling rate and define the SRO ǫ between nodes S and R
to be:

fR = (1 + ǫ) · fS ⇔
TS

TR

= (1 + ǫ). (4)

Aligning the two sample sequences can be done as follows:

First reconstruct the continuous time signal x(t) from the

discrete time sequence xR(n) via (3) and subsequently sample

it at equidistant points t = m ·TS with the sampling frequency

of node S. To be realizable, the summation in (3) has to be

constrained to a finite number of values. Using a window of

(2 · L+ 1) values gives

x′

S(m) =
ñ+L∑

n=ñ−L

xR(n) sinc

(
mTS − nTR

TR

)

(5)

=
ñ+L∑

n=ñ−L

xR(n) sinc ((1 + ǫ)m− n) , (6)

where xR(ñ) is the sample in the sequence of node R, which

is temporally closest to mTS . The parameter L determines

the computational complexity and the achievable interpolation

precision. As the sinc function decreases only with a factor of

1/n over time, fairly large values are required, e.g., L > 64,

to keep the approximation error small. In the following we

refer to this approach as “sinc interpolation”.

To compute one output sample the described sinc interpo-

lation has to calculate (2 · L+ 1) sinc function values, apply

them as weights to the samples xR(n), and sum up the terms.

Assuming a sampling frequency of 16 kHz and L = 64 this

amounts to more than 4 million operations per second, just

for resampling! To reduce the complexity and in parallel keep

the precision high we investigate an Overlap-Save method

implementation in the following.

IV. OVERLAP-SAVE RESAMPLING

Our goal is to approximate the reconstruction of (6) by a

linear convolution. This would enable an efficient implemen-

tation in the frequency domain by utilizing an OSM.

Eq. (6) can be written as

x′

S(m) =

ñ+L∑

n=ñ−L

xR(n) sinc ((1 + ǫ)(m− n) + ǫ · n) . (7)

The index n in (ǫ ·n) can be approximated by the center value

ñ if the window size is small compared to the SRO changes

within the window:

x′

S(m) ≈

ñ+L∑

n=ñ−L

xR(n)
︸ ︷︷ ︸

an

sinc ((1 + ǫ)(m− n) + ǫ · ñ)
︸ ︷︷ ︸

bm−n

, (8)

which is a linear convolution between the signals an and bn.

Eq. (8) can be realized efficiently in the frequency do-

main, where the input block size determines the degree of

approximation. Since the block size B determines both the

computational complexity and the error introduced by the

approximation, it has to be selected carefully in accordance
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to the SRO ǫ. Larger SROs require smaller block sizes to

keep the error small. Note, that the finite sum of (8) causes

distortions of the spectrum of the sinc function, including the

Gibbs-Phenomenon, which can be reduced by windowing the

sinc function with a symmetric Hann-window.

The offset ñ within the l-th block is given by

ñ(l) = (1 + ǫ) · (lB +B/2), (9)

i.e., a value linearly changing over time if the SRO is assumed

to be constant. As the input buffer of the OSM has to hold the

values closest to the sample to be interpolated, we split (9) in

two parts: the first part counting the full (integer) samples

ñi(l) = ⌊(1 + ǫ) · (lB + B/2)⌉, (10)

and the second part containing the difference between ñ(l)
and its rounded value:

ñd(l) = ñi(l)− (1 + ǫ) · (lB +B/2), (11)

i.e., the fractional part. Here, ⌊⌉ denotes rounding towards the

next integer value.

The OSM will take care of ñd(l), while ñi(l) will be

treated by an input buffer control. Since ñd(l) is always

smaller than half a sample, the delay can be realized by a

multiplication with an exponential function in the frequency

domain, without getting severe cyclic wrap-around effects.

Calculating the values of bn = sinc ((1 + ǫ)n+ ǫ · ñ) for

ñ = 0 and applying the FFT transform in advance reduces

the computational complexity of the Overlap-Save method

significantly, since it saves one FFT operation per block.

The handling of the delay ñi(l) is integrated in the input

buffer of the Overlap-Save method, where the block shift

is manipulated by ñi(l). So, instead of shifting the sinc
function we shift the input buffer. A possible implementation

is depicted in Fig. 1.

This approach is called ”OSM method” in the experiments.

T

(.)

(.)

T

xold xnew

N−B−δ B+δ

N − B B N −B + 1
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ñd
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FFT
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IFFT

y(m)

discard 0...0sinc(.)

e−j 2π

N
kñd

1 + ǫ

Fig. 1. OSM block diagram, grey blocks are used only if SRO changes

V. FREQUENCY DOMAIN SRO COMPENSATION

In [10] the authors proposed to compensate for a SRO in

the frequency domain by a multiplication with a complex

phase. We shortly summarize the idea, explain how to extend

it to data stream processing and use it for comparisons in the

experiments.

A sampling rate offset ǫ introduces an increasing delay

between the sample streams of nodes R and S. If the Short

Time Fourier Transform (STFT) is applied on both data

streams we can approximate the dependency between them

following [14] by

XR(l, k) ≈ XS(l, k) · e
−j 2π

N
(B

2
+lB)kǫ, (12)

where N is the FFT size, B the block shift and XR(l, k)
denotes the k-th bin of the l-th’s block STFT result. Note, that

zero padding is applied as the difference between FFT size N
and block size B is filled up with zeros. This, again, reduces

negative cyclic wrap around effects. Additionally, it is assumed

that both streams started synchronously with sampling at l = 0
or had at least been roughly synchronized.

Extending the frequency domain approximation of (12) to

a frequency domain resampling procedure can be done as

follows. At first, an analysis window, i.e., a periodic hann

window in our case, is applied to each input block. The block

overlap is set to half of the block size B to avoid a synthesis

window. The result of the N-point FFT is multiplied with the

exponential

p(k) = e−j 2π

N
[ñd(l)·ǫ]k. (13)

The integer part of the delay is again compensated for by the

input buffer using shift operations. Subsequently, the Inverse

Fast Fourier Transform (IFFT) is applied and the result is

added to the result of the previous block with an overlap

of B/2. In the following, this method is denoted as ”STFT

method”.

VI. EXPERIMENTS

All experiments are conducted on artificially generated data.

To this end a set of randomly weighted sinusoid functions

are superposed to obtain bandlimited pseudo-random noise

which can be sampled precisely at variable SROs for input

and reference data. We created four sets of data: The wideband

signal occupies the frequencies between 50Hz and 7.95 kHz,

while lower-band, middle-band and upper-band pseudo-noise

signals are bandlimited to (50Hz - 3 kHz), (3 kHz - 6 kHz)

and (6 kHz - 7.95 kHz), respectively. For all experiments, the

nominal sampling rate was 16 kHz.
The performance of the interpolation methods is measured

in terms of Signal-to-Interference-Noise Ratio (SINR), which

we define as follows:

SINR = 10 log10







∑

m

x2
s(m)

∑

m

[xs(m)− x′

s(m)]2






, (14)

where the sums include all samples m, excluding possible

transient phenomena during initialization.
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Fig. 2. Comparison of SINR values for resampling techniques on wideband
noise and varying window (sinc) or FFT (OSM, STFT) sizes. OSM uses a
block shift of B = 8.

At first, the STFT and the OSM approaches are compared

against the sinc interpolation method in Fig. 2 on a logarith-

mically scaled abscissa stating either the window size (2L+1)

for the sinc interpolation or the FFT size (N ) for the OSM

and STFT methods. For small window and FFT sizes the

sinc method performs somewhere between the STFT and the

OSM. As the OSM models the same sinc function as the time

domain sinc interpolation it is surprising that the two do not

show the same performance. We attribute this to the hann-

window applied to the sinc function in the sinc interpolation

method. With increasing window sizes the influence of the

hann-window vanishes and the sinc method becomes supe-

rior to all other approaches. Unfortunately, the computational

complexity of the sinc interpolation method grows rapidly with

the window size (see Fig. 5 for a comparison).

Both the OSM and STFT method profit from larger FFT

sizes, up to a certain value. After N = 1024 the SINR

achieved by the OSM method levels off, reaching plateaus

depending on the SRO. The simpler STFT approach reaches

a SRO-dependent maximum SINR between N = 512 and

N = 1024, where two opposing trends meet. For small block

sizes the analysis window attenuation limits the performance

of the STFT interpolation. For larger block sizes the analysis

window’s influence on the STFT result is reduced, but the

approximation of (12) is violated to an increasing degree .

This harms the precision and limits the possibility to arbitrarily

enlarge the FFT size. From the experiments the parameters

B = 512 and N = 1024 seems to be a good trade-off.

Fig. 3 shows the SINR performance of some interpolation

methods w.r.t the bandwidth of the input signal. For the SRO

dependent approaches, i.e., Overlap-Save method and STFT,

small (50ppm) and medium (160ppm) SROs are selected. As

the parameterization of the Spline, Lagrange and sinc interpo-

lation are independent of the SRO value we average their SINR

values across all simulated SROs. We compare the Overlap-

Save method also against the Lagrange interpolation approach

mentioned in [4], where firstly the signal is interpolated by

a factor of four and, subsequently, the interpolated signal is
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Fig. 3. Precision of different resampling methods with respect to input signal
bandwidth.

decimated by a Lagrange method. Due to the fact that the

interpolation step requires a low-pass filter, a Chebyshev-Type-

I-Low-pass filter in our case, the precision of the result is

limited as the filter modifies the signal during the upsampling

step.

For lower band signals even simple and fast approaches

show good SINR performance, e.g., Spline exceeds 55 dB
in this subset. All approaches show higher errors for signals

having higher frequency components. Lagrange handles lower

and middle band signals satisfactorily, but performance drops

rapidly for upper band signals, as the upsampling low pass

filter limits the precision in this band.

Although the sinc interpolation (L = 256) outperforms the

Overlap-Save method (B = 8, N = 1024) in terms of SINR

values for lower and middle band signals, both approaches

reach nearly the same performance for wideband signals in

case of small SROs. However, the Overlap-Save method is a

factor of 4 faster than the sinc interpolation (see Fig. 5).

A. Parameter Selection

Selecting the optimal parameters is an important part of

the system design. For the proposed Overlap-Save method it

includes selecting the block size and the FFT size. The block

size determines the block delay, the computational complexity

and the error due to the approximations. The advantage of

larger block sizes, lowering the number of operations per

second, is bought at the expense of smaller SINR values for

larger SROs, because the approximation in (8) is more and

more violated. The FFT size corresponds to the size of the

sinc function, which is used to interpolate the new values.

Here, a larger value promises better SINR values, but also

requires more operations per block.

We propose to select the parameters for block and FFT size

depending on the desired interpolation precision (SINR) and

the SRO value. Figure 4 shows the necessary parameter values

and the corresponding average processing time per 1 s length

of input data for three targeted SINR values. The solid lines in
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the left plot show the block sizes and the dashed lines display

the FFT sizes. For example, if a SINR larger than 60 dB for an

SRO of 50 ppm is desired, a block size of B = 32 and a FFT

size of N = 1024 is a suitable parameter set. The processing

time would be around 0.08 s per 1 s of input data (compare

right plot blue curve).
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Fig. 4. OSM parameter selection for certain SINR limits. Left plot shows
block size (solid line) and FFT size (dashed line) versus SRO. Right plot
depicts the average processing time per 1 s audio segment for the selected
parameters.

At last we present some experimental results concerning the

computational complexity of the interpolation methods. Fig. 5

displays the average processing time versus the achieved SINR

values for different parameterizations of the sinc, OSM and

STFT methods. The STFT method shows a good performance

in terms of computational complexity, but the precision re-

mains limited. Higher SINR values are achievable with the

OSM or the sinc method, where the OSM method offers

a wide range for selecting an appropriate trade off between

complexity and precision.
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Fig. 5. Average processing times per 1 s audio segment for different
interpolation methods (Intel Xeon CPU E3-1275 v5 @ 3.60GHz, SRO
50 ppm).

VII. SUMMARY

We presented a flexible approach for compensating sam-

pling rate offsets in the frequency domain. To this end the

computationally complex sinc time domain interpolation was

approximated by a linear convolution. This enabled the effi-

cient realization in the frequency domain by an Overlap-Save

method. The choice of its parameters block shift and FFT size

allow to trade off resampling precision in terms of the ratio

between signal and interpolation noise with computational

complexity.
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