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Abstract—As is known that nonunitary joint diagonalization
(JD) has some advantages over the unitary one in terms of
system identification accuracy. However, the existing nonunitary
JD algorithms are prone to converge to degenerate (even singular)
solutions, which result in deteriorated identification performance.
Moreover, the existing algorithms usually seek a square diagonal-
izing matrix, which greatly limits their application in overdeter-
mined system identification scenario. In order to overcome these
drawbacks, we reformulate the nonunitary JD as a multicriteria
optimization model. The resulting algorithm can converges to a
nonsquare well-conditioned diagonalizing matrix.

Index Terms—Joint diagonalization (JD), degenerate solution,
convolutive blind source separation (CBSS).

I. INTRODUCTION

In recent years, the joint diagonalization of a set of matrices
or higher order tensor has received more and more research
interest in a variety of fields [1], such as multiple source local-
ization, multiuser MIMO communication, blind beamforming
and blind source separation.

A number of state-of-the-art algorithms were proposed to
solve JD problem. The first considered method seeks a unitary
diagonalizer, Cardoso used successive Givens rotations [2],
while our previous work [3] used the Householder transform.
In BSS context, the unitary JD is applied to identify the
demixing system after a whitening phase on the raw ob-
servations. Whereas Yeredor pointed out that the whitening
phase practically distorts the LS criterion, yielding degraded
separation performance [4]. To avoid the whitening phase,
a number of nonunitary JD algorithms were developed in
the literature [5-13]. By minimizing a maximum likelihood
criterion, Pham proposed a computationally efficient algorithm
for JD [5]. However it can only be applied to positive
definite target matrices, which greatly limits its usage in BSS
context. The QDIAG algorithm, which minimizes a weighted
least squares (WLS) measure of diagonality, was proposed in
[6]. By adding a simple constraint on diagonalizer, QDIAG
can avoid the trivial solutions for JD. However, it is prone
to converge to some undesired degenerate (even singular)
solutions, which results in incomplete separation of sources
in BSS. To avoid degenerate solutions in nonunitary JD,
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the FAJD algorithm minimizes a regularization term based
WLS criterion [7], whereas FAJD requires a squared demixing
matrix, which limits its use in more generally overdetermined
BSS scenario. Besides, the other state-of-the-art algorithms
[8-12] for nonunitary JD use a multiplicative update rule to
minimize the WLS criterion, the J-Di uses the Givens and
Hyperbolic rotations for real JD [8], and its complex version
is proposed in [9] by using Shear and Givens rotations. The
FFDIAG is proposed in [10]. The trigonometric parameter-
ization method is proposed in [11], which can be regarded
as a class of Jacobi-like algorithms for nonunitary JD [12].
Although these multiplicative update algorithms are able to
avoid the degenerate solutions by using some proper constraint
mechanism, they lead to a squared demixing matrix as usual,
and hence limited applications.

In this paper, we focus our attention on the well-conditioned
solution and nonsquare demixing matrix to nounitary JD. To
this end, we reformulate the nonunitary JD as a multicriteria
optimization problem. The resulting algorithm can be applied
in overdetermined mixing scenario, and successfully elimi-
nates the degenerate solutions.

II. PROBLEM STATEMENT

Consider a set R of Q M ×M complex matrices Rq , built
as

Rq = ADqA
H , q = 1, . . . , Q (1)

where A is a M×N (M ≥ N) mixing matrix with full column
rank, Dq is a N ×N diagonal matrix. The goal of nonunitary
JD is to seek a nonsingular diagonalizer B of dimension M×
N such that the congruent transform BHRqB, q = 1, . . . , Q
are all diagonal matrices.

JD is actually a blind identification problem since A and
Dq , q = 1, . . . , Q are all supposed unknown. So the di-
agonalizer B can only be estimated up to the scaling and
permutation of its columns, i.e., B̂ = BΣΠ with Π and Σ
denote, respectively, a permutation matrix and a nonsingular
diagonal matrix. This corresponds to the arbitrary attenuation
and order of restored source signals in BSS context.

A straightforward criterion for nonunitary JD is the WLS

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1242



measure of diagonality

J (B) =

Q∑
q=1

∥∥Off(BHRqB)
∥∥2
F

(2)

where the operator Off(·) forms a zero diagonal matrix by
replacing the diagonal entries of its argument with zeros,
and ‖·‖F denotes the Frobenius norm. Direct minimization
of cost function (2) generally results in degenerate solutions
[7]. In order to avoid degenerate solutions, the FAJD algorithm
minimizes the following cost function

J ′(B) = J (B)− log |det(B)| (3)

where det(·) denotes the matrix determinant. Though elim-
inating the degenerate solutions, FAJD is limited to square
mixing case with M = N , and the numerical problem will
arise when it is applied in exact diagonalizable data set.

III. MULTICRITERIA OPTIMIZATION FOR JD

A. The Criteria

Instead of eliminating degenerate solutions, we focus on
a well-conditioned solution to nonunitary JD, which firstly
requires that the columns of B have uniform norms. With-
out losing generality, we use the unit norm constraint, i.e.,
bH
n bn = 1, n = 1, . . . , N , where bn denotes the nth column

vector of B. Further note that

κ(B) ≤ κ(BHB) < 2
det(BHB)

(
‖BHB‖2

F

N )
N
2 (4)

where κ(·) is the matrix condition number. It is well known
that a well conditioned solution is the solution with small
condition number. So we propose to consider the following
multicriteria model

min
B

J (B), max
B

det(BHB),

s.t. bH
n bn = 1, n = 1, . . . , N (5)

We see that the diagonalizer B can be nonsquare in model
(5), the minimization of J (B) guarantees that B is the
diagonalizer of set R, while the maximization of det(BHB)
under the unit norm constraint corresponds to the minimization
of the upper bound of κ(B), which leads to a well-conditioned
B. Besides we see that J (B) is lower bounded by 0, and for
det(BHB), by using the Hadamard inequality we have

det(BHB) ≤
N∏

n=1

b̃nn = 1 (6)

where b̃nn denotes the diagonal entries of BHB, one sees
b̃nn = 1, n = 1, . . . , N under the unit norm constraint. The
inequality (6) shows that the second criterion in (5) is upper
bounded by 1.

B. Optimization Algorithm

Direct optimization of (5) with respect to (w.r.t.) B is
cumbersome, we here divide the overall optimization into N
sub-optimization problems, in each sub problem we optimize
(5) w.r.t. a selected column of B, say bn, with the other
columns known and fixed. A sweep consists of solving N
sub problems, convergence is achieved after several sweeps.

Now we rewrite (5) as the function of bn, we have

J (bn) = tr(bH
n Qnbn) (7)

where tr(·) denotes the trace of a matrix, and

Qn =

Q∑
q=1

RqBnB
H
n RH

q +RH
q BnB

H
n Rq (8)

with Bn arises from the deletion of bn from B. Let B̄ =
[bn,Bn] be the column exchanged matrix of B, then for
det(BHB), we have

det(BHB) = det(B̄HB̄)

= det

[
bH
n bn bH

n Bn

BH
n bn BH

n Bn

]
= det(BH

n Bn)b
H
n P⊥

nbn (9)

where
P⊥

n = I−Bn[B
H
n Bn]

−1BH
n (10)

with I denoting the identity matrix. Since Bn is assumed
known and independent of bn, then the nth sub problem in
one sweep reads

min
bn

bH
n Qnbn, max

bn

bH
n P⊥

nbn,

s.t. bH
n bn = 1, n ∈ {1, . . . , N} (11)

For exact diagonalizable data set R, the solution to (11) should
consider two different stages. In the initial stage, B is far from
optimal, then matrix Qn is invertible, we can take bn as the
unit norm generalized eigenvector of matrix pencil (P⊥

n ,Qn)
associated with the largest eigenvalue. In the second stage,
the algorithm approaches convergence, B is nearly optimum,
then Qn will be singular with rank N − 1, then the above
procedure is numerically unstable. In this stage, let U0 be
the eigenvectors of Qn associated with the M −N + 1 zero
eigenvalues (the M −N +1 smallest eigenvalues in practice),
we take

bn = U0w (12)

where vector w consists of M − N + 1 weight coefficients.
Substituting (12) into bH

n P⊥
nbn leads to

wopt = argmax
w

wHUH
0 P⊥

nU0w (13)

The optimal solution to w is obtained by taking the eigen-
vector of UH

0 P⊥
nU0 associated with the largest eigenvalue.

One sees that the proposed algorithm (termed as JD-NS) can
be applied in more general overdetermined BSS scenario.
Moreover, the initialization of the JD-NS is quite simple, the
initial value of B can be identity matrix or randomly generated
matrix.
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IV. APPLICATION IN CBSS

The objective of CBSS is to recover the multiple unknown
sources from their convolved measurements in a reverberant
environment, the mixture model reads

xm(t) =

N∑
n=1

L∑
l=0

amn(l)sn(t− l) + vm(t), m = 1, . . . ,M

(14)
where xm(t) denotes the signal observed at the m-th receiver,
sn(t) denotes the n-th source signal, the FIR filter amn(l)
represents the impulse responses of the convolutive channel
between the n-th source signal and the m-th receiver, vm(t)
denotes the additive white Gaussian noise at the m-th receiver,
M , N , L denote the number of observations, the number of
source signals, and the length of the FIR filter. We usually
assume M ≥ N for an overdetermined scenario.

CBSS can be achieved by either joint block diagonalization
(JBD) of correlation matrices of time domain transformed
measurements [14]-[16] or JD of covariance matrices of
frequency domain measurements [17]. Since the transformed
signal model for CBSS in time domain usually results in
a high dimensional JBD problem, which is computationally
demanding (even prohibitive) in a higher order convolved
mixtures (corresponds to a severe reverberant scenario). Here
we devote to frequency domain CBSS.

Let s(t) = [s1(t), . . . , sN (t)]
T , x(t) =

[x1(t), . . . , xM (t)]
T , v(t) = [v1(t), . . . , vM (t)]

T denote
the source signal, the received signal and the noise vectors
respectively, by using the Discrete Fourier Transform (DFT),
the mixture model (14) can be written in frequency domain
as

x(ω) = A(ω)s(ω) + v(ω), ω ∈ [0, π] (15)

where A(ω) is the impulse response matrix in frequency
domain. The goal of CBSS can be stated in frequency domain
as estimating the de-mixing filters W(ω) from the observed
signals such that

W(ω)A(ω) = ΠΣ(ω), ∀ω ∈ [0, π] (16)

where Π is a frequency independent permutation matrix, and
Σ(ω) is frequency dependent diagonal matrix.

Assume that the source signals are piecewise stationary
(e.g., speech signals) and independent of each other, then the
cross-spectral density matrix of the observed signals at fre-
quency ωk(k = 0, . . . ,K−1) and time epoch q(q = 1, . . . , Q)
can be written as

Rx(ωk, q) = A(ωk)Rs(ωk, q)A
H(ωk) + σ2I (17)

where σ2 denotes the noise variance. Note that Rs(ωk, q) are
diagonal for all ωk and q, estimating the de-mixing filters
in frequency domain can be achieved by minimizing the
following cost function

J (W(ωk)) =
K∑

k=1

Q∑
q=1

∥∥Off(W(ωk)R(ωk, q)W
H(ωk))

∥∥2
F

(18)
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Fig. 1: The convergence patterns of three competitors and their
performance in 10 independent trials.

where R(ωk, q) = Rx(ωk, q) − σ2I. From (18), we see that
the optimization for each frequency bin ωk are independent
of each other, that is to say, optimization (18) can be solved
by K different JD problems. However, the CBSS requires that
permutation is consistent for each frequency bins, we always
initialize the current JD algorithm by using the diagonalizer
corresponding to the previous frequency bin.

V. SIMULATION RESULTS

The performance of the proposed algorithm is investigated
using both synthetic data and real speech signals, and the
results are compared with two nonunitary JD algorithms
(ACDC [4] and NOODLES [13]). The performance of the
JD algorithms is measured in terms of interference to signal
ratio (ISR), defined as

ISR =
1

N

⎡
⎣ N∑

i=1

⎛
⎝ N∑

j=1

|gij |2
maxl |gil|2 − 1

⎞
⎠

+
N∑
j=1

(
N∑
i=1

|gij |2
maxl |glj |2 − 1

)⎤⎦ (19)

where G = BHA = {gij} is the N dimensional global
mixing-separating matrix, the lower the ISR, the better the
performance.

Example 1: In this example, the JD algorithms are tested and
compared using the synthetic data. The target matrices in set
R are generated from model Rk = A(Dk +σ2

fFkF
H
k )AH +

σ2
eEkE

H
k , k = 1, . . . ,K, where the entries in A, Dk, Ek and

Fk are drawn from a complex Normal distribution with zero
mean and unit variance, Ek and Fk represent the disturbance
of the data model, which are used to imitate the effect of
sensor noises and statistics estimation error of the source
signals respectively. σ2

f and σ2
e are used to control the level

of disturbance, the signal to noise ratio (SNR) is defined as
SNR = 10 log10(1/σ

2
e).

We set M = 5, N = 3, K = 20 and SNR = 10dB,
σ2
f = 0.01, Fig. 1 plots the typical convergence patterns and

the ISR performance of three competitors in 10 independent
trials. Observing the evolution of the off diagonal error J ,
we see that ACDC converges slower than its competitors,
this is because that ACDC solves a inverse problem, which
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Fig. 2: The averaged convergence patterns and ISR perfor-
mance over 1000 independent trials.
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Fig. 3: The elapsed time of each competitor for one single
iteration.

indirectly estimate the mixing matrix rather than the diago-
nalizer. Although NOODLES and the proposed algorithm use
the same off diagonal error cost function, the proposed JD-
NS algorithm converges faster than NOODLES. Observing
the evolution of ISR, we see that ACDC and NOODLES
converge with poor performance in some trials. In fact, they
converge to degenerate solutions in these trials. The proposed
algorithm converges to a well-conditioned solution, and hence
uniformly reasonable perfromance. Fig. 2 shows the averaged
performance, one sees that the convergence speed and ISR
accuracy coincide with that in Fig. 1. In order to assess the
complexity of proposed algorithm, we provide the elapsed time
per iteration for three competitors under different dimensions
of target matrices. Observing Fig. 3, we see that the proposed
algorithm has a medium complexity.

Example 2: In this example, we demonstrate the perfor-
mance of JD algorithms in CBSS application. We use M = 4
synthetic mixtures of N = 3 audio signals (one speech and
two music shown in Fig. 4(a)) each with 21462 samples,
each convolutive channel is modeled as an 8-tap FIR filter
whose impulse responses are selected randomly from a Normal
distribution with zero mean and unit variance. White Gaussian
noise was added to the output of the convolutive mixing
system at SNR = 10dB. As for the estimation of cross spectral
density matrices, we divide the total data into Q = 20
epochs. At each epoch, K = 256-point FFTs, applied to
time segments overlapping by 50%, weighted by Hamming
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Fig. 4: Separation performance of JD algorithms in frequency
domain CBSS: (a) source signals; (b) ACDC; (c) NOODLES;
(d) JD-NS.

TABLE I: The SIR of recovered signals when SNR = 10dB.

sources
SIR (dB)

ACDC NOODLES JD-NS
1 2.1356 12.5451 16.6666
2 5.0295 14.8377 17.4827
3 7.1117 14.6993 20.2705

windows were used. Fig. 4 shows the separation performance
of the JD algorithms in CBSS context. Observing the separated
waveforms, we see that ACDC is inferior to NOODLES and
JD-NS.

In order to quantitatively measure the separation accuracy
of each JD algorithm in CBSS, we evaluate the signal to
interference ratio (SIR) for three recovered source signals

SIR(n) =
maxj g̃nj∑N

j=1 g̃nj −maxj g̃nj
, n = 1, . . . , N (20)

where g̃nj =
∑K−1

k=0 |gnj(ωk)|2, gnj(ωk) is the nj-th entry of
frequency domain global mixing-separating matrix G(ωk) =
W(ωk)A(ωk). Table 1 summarizes the averaged SIR of each
recovered source signal for three competitors over 100 inde-
pendent trials. We see that the proposed algorithm outperforms
ACDC and NOODLES in terms of SIR performance for three
source signals.

VI. CONCLUSION

We investigated the nonunitary JD with well-conditioned
solutions for overdetermined CBSS, a multicriteria optimiza-
tion model is proposed to solve JD problem. The resulting
algorithm can successfully eliminated the degenerate solutions.
Simulation results validate the superior ability of the proposed
algorithm.
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