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Abstract—The use of dual-microphones is a powerful tool for
noise-robust automatic speech recognition (ASR). In particular, it
allows the reformulation of classical techniques like vector Taylor
series (VTS) feature compensation. In this work, we consider a
critical issue of VTS compensation such as posterior computation
and propose an alternative way to estimate more accurately
these probabilities when VTS is applied to enhance noisy speech
captured by dual-microphone mobile devices. Our proposal
models the conditional dependence of a noisy secondary channel
given a primary one not only to outperform single-channel VTS
feature compensation, but also a previous dual-channel VTS
approach based on a stacked formulation. This is confirmed by
recognition experiments on two different dual-channel extensions
of the Aurora-2 corpus. Such extensions emulate the use of a
dual-microphone smartphone in close- and far-talk conditions,
obtaining our proposal relevant improvements in the latter case.

Index Terms—VTS feature compensation, Posterior probabil-
ity, Robust ASR, Dual-channel, Mobile device

I. INTRODUCTION

Achieving robustness against noise in automatic speech
recognition (ASR) is of utmost importance nowadays due to
the wide use of mobile devices [1]. These devices frequently
incorporate several microphones for speech enhancement pur-
poses. Additionally, the microphones can be exploited to
improve ASR performance in noisy conditions [2]–[5]. In
this regard, in our previous work [5], a vector Taylor series
(VTS) feature compensation approach was extended to be
performed on dual-microphone mobile devices. This method
consists of a minimum mean square error (MMSE)-based
estimator of the log-Mel clean speech features relying on a
VTS expansion of a dual-channel speech distortion model.
For posterior computation, it follows a stacked formulation in
which the two-channel joint information is indirectly exploited
by means of the spatial covariance matrix of noise and a
term modeling the clean speech relative acoustic path (RAP)
between the two sensors of the device. This dual-channel VTS
method proved to be quite effective when applied to dual-
microphone recordings from a smartphone employed in close-
talk conditions (i.e., when the phone loudspeaker is placed
at the ear of the user). However, as shown in this work, in
far-talk conditions (i.e., when the user holds the smartphone
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in one hand at a particular distance from her/his face), the
improvement provided by this dual-channel VTS method over
the single-channel one, in terms of recognition performance,
is limited.

Thus, in this paper we propose a novel alternative to
compute the posteriors required for dual-channel VTS feature
compensation. Unlike the previous stacked formulation, the
strategy followed in this work explicitly models the conditional
dependence of the noisy secondary channel given the primary
one. This leads to a new derivation where the correlations
between the two channels are better exploited and not in an
indirect way as for the stacked case discussed above. This is
confirmed by our speech recognition results not only by out-
performing our previous dual-channel VTS approach in close-
talk conditions, but also achieving meaningful improvements
in far-talk conditions.

The rest of the paper is organized as follows. In Section II,
the dual-channel VTS feature compensation is briefly revisited
and the problem addressed in this work is stated. The novel
approach for computing the posteriors required in Section II
is developed in Section III. Both the experimental framework
and results are shown in Section IV. Finally, in Section V,
conclusions and future work are outlined.

II. DUAL-CHANNEL VTS FEATURE COMPENSATION

First of all, for convenience reasons, the same framework
and mathematical notation as in [5] are adopted in this paper.
Thus, let us again consider the well-known speech distortion
model for additive noise in the log-Mel power spectral domain
[6], [7]:

yi = log (exi + eni) , (1)

where yi, xi and ni represent noisy speech, clean speech and
noise log-Mel feature vectors from the i-th channel of the
mobile device at a particular time frame. Specifically, i = 1
corresponds to the primary microphone and i = 2 to the
secondary one. Since the primary microphone is often located
at the bottom of the device and the secondary one at its top
or rear, it is expected that the primary signal is not more
affected by the ambient noise than the secondary one. Under
the assumption that the log-Mel clean speech features at the
primary channel can be modeled by a K-component Gaussian
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mixture model (GMM), the log-Mel clean speech features are
estimated in [5] at every time frame as

x̂1 =
K∑

k=1

P (k|y)x̂(k)
1 , (2)

where y =
(
y>1 ,y

>
2

)>
is a stacked vector and P (k|y) is the k-

th posterior probability which weights the corresponding clean
speech partial estimate, x̂

(k)
1 .

A main feature of the stacked formulation described above
is that the secondary channel is treated in a parallel manner
to the primary one, using similar distortion models. However,
as suggested above, it is likely that noise dominates at the
secondary channel, and, therefore, we can expect that the
relation between the noisy speech captured by the secondary
microphone and the clean speech is more uncertain (because
of the speech masking effect) than that of the primary channel.
We have found it more robust to condition this distortion
model at the secondary channel to the actual noisy observation
from the primary channel since both channels are greatly
correlated. This can be accomplished by replacing P (k|y)
in (2) by P (k|y1,y2), which is further decomposed as the
product of an a priori and a conditional probability density
function (PDF) as shown in Eqs. (4) and (5). In addition, since
the secondary signal is usually noisier than the primary one,
obtaining x̂

(k)
1 by only taking into account the primary channel

instead of the dual-channel information was shown to perform
better [5]. Hence, that same clean speech partial estimate
computation approach is followed in this work, namely

x̂
(k)
1 = y1 − log

(
1 + eµn1

−µ(k)
x1

)
, (3)

where µni
is a noise mean vector from the i-th channel (i =

1, 2), µ(k)
x1 is the mean vector of the k-th component of the

clean speech GMM, and 1 is an M-dimensional vector filled
with ones, where M is the number of filterbank channels.

III. IMPROVED POSTERIOR PROBABILITY COMPUTATION

The posteriors {P (k|y1,y2) ; k = 1, 2, ...,K} can be calcu-
lated by employing the Bayes’ theorem as

P (k|y1,y2) =
p (y1,y2|k)P (k)∑K

k′=1 p (y1,y2|k′)P (k′)
, (4)

where P (k) is the prior probability of the k-th component
of the clean speech GMM, and the PDF p (y1,y2|k) can be
factored as

p (y1,y2|k) = p(y1|k)p(y2|y1, k). (5)

Then, by using a VTS approach [5], [8], both p(y1|k) and
p(y2|y1, k) will be modeled as Gaussian PDFs and their
parameters are obtained as described in the following.

First, the speech distortion model of (1) is adapted to the
primary and secondary channels, respectively, as

y1 = x1 + log (1 + en1−x1) , (6)

y2 = x1 + a21 + log (1 + en2−x1−a21) , (7)

where a21 is the relative acoustic path (RAP) between the
two sensors so that x2 = a21 + x1. Eqs. (6) and (7) can be
combined to define an alternative speech distortion model for
the secondary channel given y1, as,

y2(y1) = y1 + a21 + log

[
1 + en2−x1−a21

1 + en1−x1

]
. (8)

Assuming that both a21 and ni (i = 1, 2) can be modeled
by Gaussian distributions [5], [8], [9], Eqs. (6) and (8)
are linearized by means of a first-order VTS expansion to
obtain the parameters (i.e., mean vectors and covariance ma-
trices) of p(y1|k) = N

(
y1

∣∣∣µ(k)
y1 ,Σ(k)

y1

)
and p(y2|y1, k) =

N
(
y2

∣∣∣µ(k)
y2|y1

,Σ
(k)
y2|y1

)
, respectively. By following this proce-

dure, it is straightforward to demonstrate that the mean vectors
are given by

µ
(k)
y1 = µ

(k)
x1 + log

(
1 + eµn1

−µ(k)
x1

)
,

µ
(k)
y2|y1

= y1 + µa21
+ log

[
1 + eµn2

−µ(k)
x1
−µa21

1 + eµn1
−µ(k)

x1

]
,

(9)
where µa21

is the mean vector of the RAP term. By proceeding
analogously, it is easy to show that the covariance matrix of
p(y1|k) can be approximated as

Σ(k)
y1

= J(1,k)
x1

Σ(k)
x1

J(1,k)
x1

>
+ J(1,k)

n1
Σn1

J(1,k)
n1

>
, (10)

where Σ(k)
x1

and Σni are the covariance matrices of the k-th
component of the clean speech GMM and the noise at the i-
th channel (i = 1, 2), respectively, and the Jacobian matrices
have the following definitions:

J
(1,k)
x1 =

∂y1

∂x1

∣∣∣∣
µ

(k)
x1

,µn1

= diag

(
1

1 + eµn1
−µ(k)

x1

)
,

J
(1,k)
n1 =

∂y1

∂n1

∣∣∣∣
µ

(k)
x1

,µn1

= IM − J
(1,k)
x1 ,

(11)
where diag(·) is the diagonal matrix operator and IM is an
M×M identity matrix. Similarly, the covariance matrix of
the conditional PDF p (y2|y1, k) is estimated as

Σ
(k)
y2|y1

= J
(2,k)
x1 Σ(k)

x1
J
(2,k)
x1

>
+ J

(2,k)
a21 Σa21

J
(2,k)
a21

>

+J
(2,k)
n1 Σn1

J
(2,k)
n1

>
+ J

(2,k)
n2 Σn2

J
(2,k)
n2

>

+J
(2,k)
n1 Σn1n2

J
(2,k)
n2

>
+ J

(2,k)
n2 Σn2n1

J
(2,k)
n1

>
,

(12)

where Σn1n2
= Σ>n2n1

is a cross-covariance matrix of noise,
Σa21

is the covariance matrix of the RAP factor, and the
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corresponding Jacobian matrices are calculated in a similar
way as in (11):

J
(2,k)
x1 = diag

 e
µn1
−µ

(k)
x1 −eµn2

−µ
(k)
x1
−µa21(

1+e
µn1
−µ

(k)
x1

)(
1+e

µn2
−µ

(k)
x1
−µa21

)
 ,

J
(2,k)
a21 = diag

(
1

1 + eµn2
−µ(k)

x1
−µa21

)
,

J
(2,k)
n1 = −J

(1,k)
n1 ,

J
(2,k)
n2 = IM − J

(2,k)
a21 .

(13)
To perform the above calculations, the parameters of the

different PDFs (i.e., p(x1), p(a21) and p(ni), i = 1, 2) plus
Σn1n2 are obtained as suggested in [5]. In summary, a 256-
component clean speech GMM is employed, both µa21

and
Σa21

are determined a priori from a development dataset, and
the parameters of p(ni), i = 1, 2, and Σn1n2

are estimated on
an utterance-by-utterance basis by considering that no speech
is present in the first and last 20 frames of every utterance
(i.e., noise only).

IV. EXPERIMENTS AND RESULTS

The method developed in this work is evaluated in terms of
word recognition accuracy when applied to a dual-microphone
smartphone employed in noisy environments in both close-
and far-talk conditions. Subsection IV-A briefly describes
the experimental framework, while the results are set out in
Subsection IV-B.

A. Experimental Framework

In this paper the AURORA2-2C-CT (Aurora-2 - 2 Channels
- Close-Talk) and the AURORA2-2C-FT (Aurora-2 - 2 Chan-
nels - Far-Talk) corpora, generated as extensions to the well-
known Aurora-2 database [10], are used. The AURORA2-2C-
CT, described in detail in [3], emulates the capturing of noisy
speech by using a dual-microphone smartphone in close-talk
conditions. By following an analogous procedure as in [3], the
AURORA2-2C-FT was created for far-talk condition experi-
ments. Since both corpora follow the Aurora-2 structure, two
test sets, A and B, are defined for each database from dual-
channel utterances contaminated with different types of noise.
The signal-to-noise ratios (SNRs) considered are referred to
the primary channel and they are the same as in [10]: from -5
dB to 20 dB with a step of 5 dB (plus the clean case).

The European Telecommunications Standards Institute
front-end (ETSI FE, ES 201 108) [11] is used for speech
feature extraction. Once the cepstral coefficients are obtained
for recognition, cepstral mean and variance normalization
(CMVN) is applied to strengthen the ASR system.

DNN-HMM-based acoustic models are used. First, clean
models are trained on the Aurora-2 clean training dataset
comprising 8440 utterances. Additionally, multi-style acoustic
models are also evaluated. These models are obtained from
distorted speech features to further strengthen the ASR system

against noise. In AURORA2-2C-CT/FT, the corresponding
multi-style training datasets are also composed of 8440 ut-
terances and generated from the clean training dataset of
Aurora-2. These datasets consist of dual-channel utterances
contaminated with the types of noise in test set A (i.e.,
bus, babble, car and pedestrian street noises) at the SNRs
(referred again to the primary channel) of 5 dB, 10 dB, 15
dB and 20 dB plus the clean condition. To train the multi-
style acoustic models, training utterances are first processed
with each method evaluated in this paper.

In first instance, different GMM-HMM-based acoustic mod-
els are trained for the AURORA2-2C-CT and the AURORA2-
2C-FT databases. For each set of models, HMMs with 16
states are used to model each of the 11 digits. Additionally,
silence is modeled by an HMM with 3 states [10]. The training
speech feature vectors are then used to train the resulting 179
different HMM states, which are modeled by a total of 3000
Gaussians. Next, DNNs with 5 hidden layers and 2048 neurons
per layer are trained from the alignments resulting from the
above GMM-HMM-based ASR systems.

Besides dual-channel VTS feature compensation integrating
our novel posterior computation (2-VTS-C), two additional
VTS approaches are evaluated for comparison. One of them
is the single-channel VTS feature compensation (1-VTS) from
[7] applied on the primary channel. The other one is the dual-
channel VTS approach of [5] based on a stacked formulation
(2-VTS-S). For a fair comparison, all the parameters required
by these techniques are computed in the same way, as well
as all of them consider the clean speech partial estimate
computation of Eq. (3). Furthermore, MVDR (Minimum Vari-
ance Distortionless Response) beamforming [12] and the ETSI
advanced front-end (AFE) [13] applied on the primary channel
are tested as a reference along with the baseline (i.e., when
using the noisy speech features from the primary channel).
Finally, as in [3], [5], the dual-channel power spectrum en-
hancement methods MMSN and DCSS are evaluated when
used as pre-processing techniques for the different VTS ap-
proaches considered. In particular, those techniques are applied
to generate an enhanced primary channel to be used instead
of the original one for VTS compensation.

B. Experimental Results

The word accuracy results achieved for the different VTS
feature compensation approaches along with those obtained for
the additional techniques tested are shown in Table I (when
using both clean and multi-style acoustic models under both
close- and far-talk conditions). These word accuracies are
averaged across all types of noise in each test set and SNRs
from -5 dB to 20 dB. As can be seen, 2-VTS-C not only
outperforms 1-VTS, but also 2-VTS-S under both close- and
far-talk conditions as well as by employing either clean or
multi-style acoustic models. Besides this, it is noticeable that
MVDR beamforming achieves quite poor results when clean
acoustic models are employed (while it obtains competitive
results under multi-style acoustic modeling due to the minor
mismatch between training and test data). This can be ex-
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TABLE I
WORD ACCURACY RESULTS IN TERMS OF PERCENTAGE OBTAINED FOR THE ASSESSED METHODS WHEN USING BOTH CLEAN AND MULTI-STYLE

ACOUSTIC MODELS UNDER BOTH CLOSE- AND FAR-TALK CONDITIONS. RESULTS ARE AVERAGED ACROSS ALL TYPES OF NOISE IN EACH TEST SET AND
SNRS FROM -5 DB TO 20 DB.

CLOSE-TALK FAR-TALK

Clean models Multi-style models Clean models Multi-style models

Test A Test B Average Test A Test B Average Test A Test B Average Test A Test B Average
Baseline 36.76 31.52 34.14 90.97 77.27 84.12 40.96 30.53 35.74 91.46 74.69 83.07

AFE 74.32 69.00 71.66 89.84 83.89 86.86 74.33 69.20 71.77 90.38 83.37 86.88
MVDR 46.72 38.98 42.85 91.34 83.57 87.45 52.71 39.71 46.21 93.90 84.71 89.30
1-VTS 84.37 78.05 81.21 89.76 84.20 86.98 84.39 79.06 81.72 90.01 85.12 87.57

2-VTS-S 88.23 83.23 85.73 91.50 87.36 89.43 86.57 81.23 83.90 91.01 86.32 88.66
2-VTS-C 88.70 83.44 86.07 91.87 87.66 89.77 87.82 82.46 85.14 91.61 87.05 89.33

TABLE II
WORD ACCURACY RESULTS IN TERMS OF PERCENTAGE OBTAINED WHEN USING MMSN AND DCSS AS PRE-PROCESSING TECHNIQUES FOR VTS

FEATURE COMPENSATION. BOTH CLEAN AND MULTI-STYLE ACOUSTIC MODELS ARE EMPLOYED UNDER BOTH CLOSE- AND FAR-TALK CONDITIONS.
RESULTS ARE AVERAGED ACROSS ALL TYPES OF NOISE IN EACH TEST SET AND SNRS FROM -5 DB TO 20 DB.

CLOSE-TALK FAR-TALK

Clean models Multi-style models Clean models Multi-style models

Test A Test B Average Test A Test B Average Test A Test B Average Test A Test B Average
MMSN-1 89.55 84.62 87.08 92.74 88.84 90.79 88.29 82.67 85.48 92.47 87.51 89.99

MMSN-2S 90.02 85.49 87.75 92.99 89.44 91.22 88.07 82.70 85.39 92.21 87.72 89.96
MMSN-2C 91.03 86.26 88.64 93.56 90.03 91.80 89.60 84.04 86.82 93.00 88.58 90.79

DCSS-1 89.65 84.72 87.19 92.92 88.99 90.95 88.77 83.10 85.93 92.66 87.95 90.30
DCSS-2S 90.06 85.57 87.82 92.84 89.46 91.15 88.37 83.14 85.76 92.33 87.90 90.11
DCSS-2C 91.02 86.31 88.67 93.47 89.93 91.70 89.70 84.04 86.87 93.24 88.53 90.88

TABLE III
DETAILED WORD ACCURACY RESULTS (IN TERMS OF PERCENTAGE AND FOR DIFFERENT SNR VALUES) OBTAINED FOR THE ASSESSED TECHNIQUES

WHEN EMPLOYING MULTI-STYLE ACOUSTIC MODELS UNDER FAR-TALK CONDITIONS. RESULTS ARE AVERAGED ACROSS ALL TYPES OF NOISE IN TEST
SETS A AND B.

SNR (dB) Baseline AFE MVDR 1-VTS 2-VTS-S 2-VTS-C MMSN-1 MMSN-2S MMSN-2C DCSS-1 DCSS-2S DCSS-2C

-5 43.70 51.40 59.84 55.38 59.29 61.30 63.84 63.68 66.54 64.85 64.66 67.00
0 74.41 80.88 85.55 81.62 83.43 84.85 85.91 86.03 87.26 86.47 86.28 87.41
5 89.41 93.41 95.14 93.39 94.07 94.42 94.81 94.72 95.28 95.02 94.80 95.39

10 95.28 97.43 97.80 97.43 97.56 97.68 97.74 97.78 97.99 97.89 97.66 97.96
15 97.22 98.82 98.57 98.57 98.55 98.65 98.62 98.59 98.68 98.62 98.49 98.67
20 98.41 99.33 98.94 99.01 99.08 99.08 99.02 98.98 99.00 98.97 98.77 98.88

Clean 99.42 99.58 96.84 99.38 99.35 99.31 99.22 99.20 99.21 98.99 98.92 98.95

Avg. (-5 to 20) 83.07 86.88 89.30 87.57 88.66 89.33 89.99 89.96 90.79 90.30 90.11 90.88

plained because of the limitations of the classical beamforming
methods in this scenario (i.e., only two microphones are
available and one of them is placed in an acoustic shadow
with respect to the speaker’s mouth) as mentioned in [14],
[15].

Table II shows the results obtained when MMSN and
DCSS are used as pre-processing techniques for VTS fea-
ture compensation. In combination with these pre-processing
techniques, 2-VTS-C outperforms 1-VTS and 2-VTS-S with
either clean or multi-style acoustic models under both close-

and far-talk conditions. In this respect, it is interesting to note
that the new way of computing the posteriors has allowed
to overcome the constraints of the stacked formulation when
combined with MMSN and DCSS in far-talk conditions (where
1-VTS provides slightly better performance than 2-VTS-S).
This is of particular importance since the far-talk scenario
is of special interest for ASR with mobile devices. For this
reason, Table III details the word accuracy results achieved
under far-talk conditions for the different methods tested when
multi-style acoustic models are employed. These results are

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2082



broken down by SNR and averaged across all types of noise
in test sets A and B. From Table III we can observe that
while 2-VTS-C exhibits a very good performance over the
whole SNR range considered (when applied either isolatedly
or jointly with MMSN/DCSS), it particularly stands out at
low SNRs. This is a remarkable result, since mobile devices
are often used in highly noisy environments such as crowded
streets or other public venues. Finally, it is worth noting that
AFE achieves the best results at higher SNRs at the expense
of a modest performance at lower SNRs.

V. CONCLUSIONS

In this work we have proposed a novel posterior compu-
tation approach for improved dual-channel VTS feature com-
pensation for mobile devices. Accurate posteriors have been
obtained by explicitly modeling the conditional dependence
of the noisy secondary channel given the primary one. Thus,
especially under far-talk conditions, noticeable improvements
in terms of recognition accuracy have been achieved with
respect to using a dual-channel VTS approach based on a
stacked formulation. As future work, we will research on how
to exploit the dual-channel information for better clean speech
partial estimate computation.
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[12] X. Mestre and M. Á. Lagunas, “On diagonal loading for minimum
variance beamformers,” in Proc. of ISSPIT 2003 – 3rd International
Symposium on Signal Processing and Information Technology, Darm-
stadt, Germany, 2003, pp. 459–462.

[13] “ETSI ES 202 050 - Distributed speech recognition; Advanced front-end
feature extraction algorithm; Compression algorithms,” .

[14] I. Tashev, S. Mihov, T. Gleghorn, and A. Acero, “Sound capture system
and spatial filter for small devices,” in Proc. of EUROSPEECH 2008
– 9th Annual Conference of the International Speech Communication
Association, September 22–26, Brisbane, Australia, 2008, pp. 435–438.

[15] I. Tashev, M. Seltzer, and A. Acero, “Microphone array for headset with
spatial noise suppressor,” in Proc. of IWAENC 2005 – 9th International
Workshop on Acoustic, Echo and Noise Control, 2005.

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 2083


