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Abstract—Predicting the temporal dynamics of three-
dimensional images is an important means for analyzing volumet-
ric data. We propose an unsupervised learning of a multi-scale
optical flow based approach for predicting the next frame of a
sequence of volumetric images. The fully differentiable model
consists of specific crafted modules that are trained on small
patches. To test the proposed approach, we ran unsupervised
experiments on synthetic incompressible two-fluid Navier-Stokes
simulation and real magnetic resonance imaging (MRI) of the
cardiac cycle. Comparison of a spatial version of our architecture
to recent methods in predicting the next frame of movie sequences
shows significant quantitative and visual improvements.

I. INTRODUCTION

Motion lies at the core of dynamical systems. One way to
understand the motion of forms and structures in images is
through optical flow [1], [2], which is an approximation of
the motion of objects in an image, and its computation was
traditionally based on local spatial and temporal derivatives
in a given sequence of images. That is, in two dimensions
it tries to specify how much the semantic content of each
image pixel moves between adjacent images, while in three
dimensions it specifies how much the content of each vol-
ume element (voxel) moves between adjacent volumes. While
several solutions to deep optical flow and video prediction
are well established [3], [4], [5], [6], [7], [8], [9], [10], [11],
volumetric temporal evolution learning remained unexplored.
Part of the difficulty in devising a robust and efficient 3D
optical flow is due to the large number of possibilities by
which each voxel can move. Another difficulty is that in many
situations, such as three dimensional dynamical systems that
involve fluid or gas, the brightness constancy [1] assumption
is invalid. Moreover, unlike the two dimensional case, where
there exist some benchmarks with ground-truth optical flow,
volumetric datasets lack such supervised information.

The approach introduced here, is motivated by several pa-
pers that predict the next frame of movie sequences, knowing
the past and the present frames, in an unsupervised manner.
The end-to-end differentiable architecture is based on multi-
scale optical flow prediction. Each pyramid level consists of
a deep generative network, which is designed as a series of
convolution layers with element-wise multiplication modules,
followed by rectified linear units. The generative network
recursively refines the future optical flow estimation and

Fig. 1: Multi-scale architecture.

simultaneously adjusts the last frame that the warping module
operates on. We refer to the proposed architecture as “V-Flow.”

The key contributions of V-Flow include the following
features.

• We introduce a latent frame which is a variation of the
last frame. Each pixel of the latent frame is moved in
keeping with the optical flow to produce the next frame
prediction. Optimizing for both the latent image as well
as the optical flow is important for two reasons. First, the
use of the latent frame is beneficial for situations where
the brightness constancy assumption is invalid. Second,
if quantitative performance (mean square error) is the
important measure, then it is best to somewhat blur the
images before moving them.

• The model is trained without any supervision effort, by
minimizing the reconstruction error between the predicted
volumetric frame and the ground truth next frame. The
optimizer minimizes the absolute error criteria aggregated
with a volumetric gradient difference loss function.

• Given previous volumetric frames, the system predicts 3D
future optical flow. Multiple scales are combined linearly
in a Laplacian pyramid like fashion.

• The neural network is specifically designed for the task of
optical flow prediction and consists of multiple convolu-
tion and multiplication layers. A novel three dimensional
warping module is introduced, comprised of 3D grid
generator and a linear tri-sampler.



II. RELATED EFFORTS

As learning of three dimensional volume prediction is yet
unexplored, we draw inspiration from papers related to video
prediction. Prediction of both two and three dimensional video
dynamics is a challenging problem due to its complexity and
the inherent intensity ambiguity in image sequences. Srivas-
tava et al. [4] introduced Long Short Term Memory (LSTM)
networks [12] to learn representations of video sequences in an
unsupervised manner. Lotter et al. [5] designed a neural net-
work architecture, inspired by the concept of predictive coding
to continually predict the appearance of future video frames,
using a deep, recurrent convolution network with both bottom-
up and top-down connections. Patraucean et al. [6] used a
convolution LSTM network that integrates changes over time
and an optical flow [1], [2] prediction module that extends the
Spatial Transformer [13] by using a per-pixel transformation
for each position instead of a single transformation for the
entire image. This approach is somewhat related to supervised
deep optical flow models like DeepFlow [9], FlowNet [10],
and SPyNet [11].

Ranzato et al. [3] defined a recurrent network architecture
inspired from language modeling, predicting the frames in
a discrete space of patch clusters. Brabandere et al. intro-
duced the Dynamic Filter Network, where filters are generated
dynamically conditioned on an input and demonstrated the
effectiveness of the dynamic filter network on the task of
video prediction. The Video Pixel Networks proposed by
Kalchbrenner et al. [7] use a generative video model, that
reflects the factorization of the joint distribution of the pixel
values in a video. Oh et al. [14] proposed an action conditional
auto-encoder model, and predicted next sequences of Atari
games from a single screen image. To deal with the inherently
blurry predictions obtained from the standard Mean Squared
Error (MSE) loss function, Mathieu et al. [8] proposed a
multi-scale architecture, and improved the quality of predicted
images by using a Laplacian pyramid [15] and an image
gradient difference loss function.

Fig. 2: Generative network Gs.

III. ARCHITECTURE

A. Optical flow process

Suppose we are given an input sequence of k volumetric
frames (patches) V 1, V 2, . . . , V k ∈ Rc×t×h×w with c color
channels and grid size of t×h×w. We would like to predict the
next frame Y ≡ V k+1 ∈ Rc×t×h×w. We assume the existence
of an underlying optical flow process that deforms a latent
frame Z ∈ Rc×t×h×w into Y . The latent frame Z is guided
by an optical flow vector field F ∈ Rd×t×h×w (d = 3), such
that each pixel of Y is found by moving the corresponding
pixel of Z in line with the displacements coded in F . This
can be expressed by

Y (i, x, y, z) = Z(i, x̃, ỹ, z̃)

where x̃ = x − F (1, x, y, z), ỹ = y − F (2, x, y, z), z̃ = z −
F (3, x, y, z), and i ∈ {1 . . . c}, x ∈ {1 . . . t}, y ∈ {1 . . . h},
z ∈ {1 . . . w}. We denote the operator that takes Z and F as
inputs and calculates Y as the FlowWarp operator.

Our goal is to estimate the latent frame Z and the optical
flow F . Let Ẑ ∈ Rc×t×h×w, F̂ ∈ Rd×t×h×w be the
estimations of Z, F , respectively, and let Ŷ ∈ Rc×t×h×w

be the next frame prediction of Y that is calculated by
Ŷ = FlowWarp(Ẑ, F̂ ). We wish Ŷ to be as close as possible
to the target Y . This can be formalized by introducing a loss
function between the predicted next frame and the ground
truth next frame. Let Loss(Ŷ , Y ) denote this loss function.
Therefore, Ẑ, F̂ are found by optimizing

Ẑ, F̂ = argmin
Z,F

Loss(FlowWarp(Z,F ), Y ).

A basic approach would set Ẑ to be exactly equal to V k.
Here, we allow some leeway. We introduce the auxiliary
variable A ∈ Rc×t×h×w. A is linearly combined with V k

to get the latent frame Ẑ.
Theoretically, there are many solutions for Z, F that are

equivalent. But in practice, because we are setting Ẑ as a
linear combination of V k and A, we observe that the network
converges to a specific solution, such that FlowWarp(V k, F̂ )
is a good estimation of Y . Essentially, we see that the auxiliary
variable A can restore the brightness constancy assumption
for some situations where it is invalid. It also absorbs most
of the blurring effect inherent in video prediction. Hence,
in the evaluation phase, it is possible to generate sharper
predictions by omitting A altogether. We denote this option
as V-Flow-Sharp. Deriving the latent frame Z and the optical
flow F is challenging due to the fact that the movement
of each pixel between adjacent frames has many degrees of
freedom. Therefore, to estimate Ẑ and F̂ we adopt a multi-
scale architecture.

B. Multi-scale network

Overview. The structure of the multi-scale network is based
on pyramid decomposition [16], [15], [8], [11] and is made
of a series of generative networks that follow one another as



illustrated in Figure 1. The generative networks use down-
sampled versions of the input sequence to make their pre-
dictions, ranging from the lowest to the highest resolutions.
The predictions are recursively passed on as starting points for
consequent pyramid levels, and are refined in such a way that
the output of the last generative network reaches the desired
original resolution.

More specifically, let s ∈ {1 . . . N} be the index of
the pyramid level. Let ds(·) be the downsampling func-
tion that decimates a frame by a factor of 2N−s, and let
V 1
s , V

2
s , . . . , V

k
s ∈ Rc×ts×hs×ws be a down-sampled version

of the input volumetric frames in increasing resolution, such
that V j

s = ds(V
j), ∀j ∈ {1 . . . k}. The network consists

of a sequence of N generative networks denoted by Gs.
Let F̂s ∈ Rd×ts×hs×ws be the optical flow estimation, and
Ẑs ∈ Rc×ts×hs×ws be the latent frame of the s level of
the pyramid. The generative network Gs receives the down-
sampled input volumetric frames, and the up-sampled products
of the preceding network Gs−1, computes F̂s and Ẑs by
a multi-layered neural network, and outputs the next frame
prediction Ŷs ∈ Rc×ts×hs×ws by warping the frame Ẑs

according to the optical flow F̂s. Then, F̂s, Ẑs and Ŷs are
upsampled by a factor of two and passed to the succeeding
generative network Gs+1. This is done recursively from the
lowest resolution to the finest one.
Generative network. The generative network is shown in
Figure 2. On the left of the Figure is the prediction module
and on the right is the warping module. Two sources feed
the generative network. The first is the given input sequence
of volumetric frames which are down-sampled to the current
resolution. The second information source is the set of up-
sampled products of the preceding generative network.

Fig. 3: Convolution and multiplication neural network.

Prediction module. The prediction module calculates the
optical flow F̂s and the latent frame Ẑs. It includes a neural
network that is specifically designed for the task of optical
flow prediction.
Convolution and multiplication neural network. The multi-
layered neural network outputs the flow residual Rs ∈
Rd×ts×hs×ws and the auxiliary variable As ∈ Rc×ts×hs×ws ,
that are used to calculate F̂s and Ẑs. It is based on a classic

TABLE I: Network configuration

Volumetric next frame prediction
# feature maps kernel size

G1 64,128,64 5,3,3,5
G2 64,128,256,128,64 5,3,3,3,3,3,5
G3 64,128,256,128,64 7,5,5,5,5,5,7

Video next frame prediction
# feature maps kernel size

G1 128,256,128 3,3,3,3
G2 128,256,128 5,3,3,5
G3 128,256,512,256,128 5,3,3,3,3,3,5
G4 128,256,512,256,128 7,5,5,5,5,7

Fig. 4: Turbulence prediction. In each of the 3 examples, the first
row are the 6 ground truth pressure slices, and the second row is

their respective predictions.

structure of volumetric convolution layers followed by rectified
linear units (ReLU). To better capture the temporal correlations
between adjacent frames, we insert an element-wise multipli-
cation block, as shown in Figure 3. The configuration we used
in our experiments are given in Table I. In all layers, the size
of the multiplication block is 1/4 of the overall number of
feature maps.
Flow prediction. Let u(·) be a function that increases the
resolution of the flow prediction of the preceding pyramid level
by a factor of two. The optical flow estimation F̂s is obtained
by applying a pyramid style refinement

F̂s = βu(F̂s−1) +Rs.

The weight β regulates the propagation of the optical flow.
We typically initialize β = 0.7.



TABLE II: Mean Square Error (MSE) of pressure predictions (in micro-units).

Method 1st Frame 2nd Frame 3rd Frame 4th Frame 5th Frame 6th Frame 7th Frame 8th Frame
V-Flow (test) 3.7 21.0 67.7 160.6 342.3 639.7 1031.4 1509.1

V-Flow-Sharp (test) 23.3 109.2 280.4 500.9 780.6 1095.5 1434.1 1781.9
Last (test) 68.3 243.7 477.4 734.3 995.3 1251.8 1500.1 1739.5

V-Flow (train) 3.7 21.1 67.0 158.8 335.9 619.6 983.1 1416.4
V-Flow-Sharp (train) 23.0 107.3 276.8 494.2 771.3 1082.1 1415.6 1757.0

Last (train) 74.1 259.3 499.9 758.9 1018.8 1270.4 1510.1 1737.4

Fig. 5: Comparison of different methods to predict the next frame from UCF101. Left to right: ground truth, V-Flow, V-Flow-Sharp,
adversarial, optical flow.

TABLE III: Mean Square Error (MSE) of MRI predictions
(in milli-units).

Method 1st Frame 2nd Frame 3rd Frame
V-Flow (test) 3.2 8.0 13.0

V-Flow-Sharp (test) 3.6 9.1 14.4
Last (test) 5.1 12.5 18.8

V-Flow (train) 2.9 7.3 11.9
V-Flow-Sharp (train) 3.3 8.4 13.4

Last (train) 4.7 11.5 17.4

Latent frame. The latent frame Ẑs is determined by linearly
combining the last input volumetric frame V k

s and the auxiliary
variable As as follows

Ẑs = αV k
s +As.

α is a weight that controls the power of the last frame in Ẑ.
We initialize α = 1.0.
Warping module. The refined optical flow F̂s drives a 3D
optical flow warping module. This module is implemented
similarly to the method of Patraucean et al. [6] for video
prediction. A three dimensional grid generator represents the
optical flow as a dense transformation map that maps Ẑs to
Ŷs. A novel trisampler module follows. It uses the map to
interpolate Ẑs linearly, and effectively moves voxels of the
estimated latent frame Ẑs to obtain Ŷs. Hence, we have

Ŷs = FlowWarp(Ẑs, F̂s) =

= Trisampler(Ẑs,Grid Generator(F̂s)).

C. Training

The model is trained by minimizing the reconstruction error
between the predicted next frame and the ground truth next
frame. One way is to minimize the Lp distance

Lp(Ŷ , Y ) =
∥∥∥Ŷs − Ys∥∥∥p

p
.

In our multi-scale architecture we use p = 1.
Another option is to penalize the differences between the

prediction gradients and the image gradients. We adapt the
gradient difference loss (GDL) of [8] to our volumetric setting.
Thus, we define the volumetric gradient loss (VGDL)

LVGDL(Ŷ , Y ) =∑
x,y,z

(
||Yx,y,z − Yx−1,y,z| − |Ŷx,y,z − Ŷx−1,y,z||+

||Yx,y,z − Yx,y−1,z| − |Ŷx,y,z − Ŷx,y−1,z||+

||Yx,y,z − Yx,y,z−1| − |Ŷx,y,z − Ŷx,y,z−1||
)
.

The total loss combines the L1 and the LVGDL loss functions
with different weights, and is expressed by

Loss(Ŷs, Ys) = λL1

S∑
s=1

L1(Ŷs, Ys) + λVGDL

S∑
s=1

LVGDL(Ŷs, Ys).

In our experiments the parameters λL1 and λVGDL are set to
1.0 and 0.5, respectively.

IV. EXPERIMENTS

To assess qualitatively and quantitatively the behavior of the
proposed architecture and its components, we ran unsupervised



TABLE IV: PSNR, SSIM and sharpness results on UCF101 dataset

1st Frame 2nd Frame 3rd Frame
Method PSNR SSIM Sharpness PSNR SSIM Sharpness PSNR SSIM Sharpness
V-Flow 32.10 0.93 25.65 29.06 0.91 25.10 26.47 0.87 23.95

V-Flow-Sharp 31.65 0.93 25.50 28.58 0.90 24.91 25.97 0.86 23.74
Mathieu et al. [8] 31.47 0.91 25.38 27.45 0.87 24.69 24.56 0.82 23.64

Last 28.50 0.89 24.58 26.21 0.87 24.15 24.56 0.84 23.26
EpicFlow et al. [17] 31.97 0.93 25.57 28.46 0.90 24.80 26.16 0.87 23.76

Input frames

Ground truth

V-Flow

V-Flow sharp

Adversarial

Optical flow

Fig. 6: Comparison of different methods on UCF101.

Input frames

Ground truth

V-Flow

V-Flow sharp

Adversarial

Optical flow

Fig. 7: Comparison of different methods on UCF101.



experiments on synthetic as well as real datasets. In order to
predict more than one frame, we apply the model recursively
by using the newly generated frame as an input. In all our
experiments we used four input frames. Our implementation
is based on Torch library [18] and was trained on a TITAN-X
nvidia GPU with 12GB memory. The optimization was done
using adagrad [19]. The spatial and volumetric configuration
have 15,808,667 and 16,648,465 trainable parameters, respec-
tively.

A. Two-fluid Navier-Stokes simulation

Fluid dynamics has a wide range of applications, including
calculating forces and moments on aircraft, determining the
flow rate of water through pipelines, and predicting weather
conditions and ocean currents. The motion of viscous fluid
substances is governed by the Navier-Stokes equations, which
are a non-linear set of differential equations that describes the
flow of a fluid whose stress depends linearly on flow velocity
gradients and pressure.

We test our architecture on the homogeneous buoyancy
driven turbulence database [20], [21] that simulates the turbu-
lence of incompressible two fluids of different molar masses
by solving the Navier-Stokes equations. We note that the
numerical solution of the Navier-Stokes equations for turbulent
flow is extremely difficult and the computational time in some
situations becomes infeasible for calculation.

The database simulation grid is of size 10243 at 1015 time
frames. The input to our model is the pressure volume derived
from the solution of the Navier-Stokes equations. The pressure
does not fully define the temporal evolution of the buoyancy
driven turbulence. Nevertheless, we try to predict the future
pressure volumes. We randomly extract sequences of 20 time
frames and of size 643 from the simulation grid. The frames
were normalized so that their values are mapped to the interval
[−1, 1]. We used 144 sequences for training and 49 for testing.

Figure 4 shows examples of the predicted pressure at six
consecutive future time frames using the proposed volumetric
optical flow architecture. Table II shows the mean square error
for predicting eight future frames. We compare V-Flow to the
baseline of the last frame, and to V-Flow-Sharp on both the
train and test sets. We see that the model generalizes well. We
see that in this case the latent variable is very important, since
it can predict the mixing of the two fluids. Hence there is a
gap between the performance of V-Flow and of V-Flow-Sharp.

B. Volumetric MRI

Magnetic Resonance Imaging (MRI) is considered the gold
standard test to accurately assess the heart’s squeezing ability.
Analyzing the heart’s motion is important for estimating the
amount of blood ejected from the left ventricle with each
heartbeat. The 2015 Data Science Bowl (DSB) dataset [22]
consists of cardiac MRI images in DICOM format across the
cardiac cycle, with a minimum of 8 slices at each time frame.
We have extracted the region of interest [23] of size 128×128
from each slice. We trained the multi-scale architecture on
8× 16× 16 patches on 455 training sequences of volumetric

data to predict the next volume in the sequence. We tested
the model on 174 test sequences. Table III shows the perfor-
mance of the proposed approach for the testing and training
sequences. Again, we see that the algorithm generalizes well.
Remark: careful inspection of the results shows that there is
no significant flow across slices. This can be explained by the
fact that the slice thickness is between 4 to 10 times larger
than the pixel spacing within slice.

C. Video prediction

To quantitatively compare our approach to existing methods,
we had to downscale our approach to two dimensions. For
training, we used a subset of the Sports1m dataset [24]. All
frames were down-sampled to a 240 × 320 pixel resolution
and normalized. We train our network by randomly selecting
temporal sequences of patches of size 64× 64 pixels.

We evaluated the quality of our video predictions on 738
test videos from the UCF101 dataset [25]. We compute the
Peak Signal to Noise Ratio (PSNR), the Structural Similarity
Index Measure (SSIM) [26] and sharpness of the images as
in [8]. As some of the images in the UCF101 dataset do not
involve any motion, we use the approach presented in [8] and
compute the different quality measures only in the regions
where the optical flow is higher than a fixed threshold. In
some of the sequences, the last frame predicts the next frame
almost perfectly. These sequences are discarded. We evaluate
our architecture with and without modifying the last frame.
We compare to the baseline last image and to the adversarial
learning method of Mathieu et al. [8], [27]. We also include
the optical flow method that extrapolates the pixels of the next
frame by using the optical flow from the last two frames [17],
[28]. The results are given in Table IV. We see that V-Flow
presents a significant improvement of all measures. Figures 5,
6 and 7 show examples of the next frame prediction on test
sequences from the UCF101 dataset. Although V-Flow present
the best quantitative results, its output is blurred. By applying
the optical flow on the last frame, we get much sharper images
which visually appear realistic. The results of the adversarial
net are blurry and there are some artifacts. The optical flow
images are usually sharp and visually appealing, but in Figure
5 the skate-boarder’s head is squeezed and the trumpeters are
filtered out

V. CONCLUSIONS

A volumetric optical flow based next frame prediction
method has been presented. We defined an underlying optical
flow process that is flexible enough to model a range of
problems. We used neural networks at each level of the
volumetric pyramid to estimate the nature of the optical flow
process, and trained the networks in an unsupervised manner.

As an implication of the ideas proposed in this paper,
consider the way dynamical systems are currently being an-
alyzed and simulated. Classical theoreticians try to model
systems by postulating compact physical equations (usually
differential ones) that represent the observed dynamics. Then,
experimental researchers often make measurements to validate



the theoretical model and assumptions. If the results do not
match the model, scientists try to come up with a different
model and repeat their evaluations. Our architecture goes the
other way around. From the measurements themselves the
network captures the governing “equations”. Within this scope,
validation is based on the networks prediction capabilities,
and the networks architecture, which is somewhat flexible,
replaces the exact rigid classical model. We think that this
is a promising alternative approach that scientists can exploit
in order to analyze dynamical systems.
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