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ABSTRACT

The recent advances in sensing technologies, embedded sys-
tems, and wireless communication technologies, make it pos-
sible to develop smart systems to monitor human activities
continuously. The occupancy of specific areas or rooms in a
smart building is an important piece of information, to infer
the behavior of people, or to trigger an advanced surveillance
module. We propose a method based on computational topol-
ogy to infer the occupancy of a room monitored for a week
by a system of low-cost sensors.

Index Terms— WSN, surveillance, occupancy, human
behavior, computational topology, persistent homology

1. INTRODUCTION

Improving the energy efficiency of buildings is a lively re-
search topic. Technologies for the monitoring and conse-
quent intervention on the environment not only help saving
resources, but also improve the well-being perceived by
building occupants [1]. One of the simplest policies to im-
prove energy-efficiency while respecting the well-being of
occupants, is the automatic regulation of the usage of energy
based on the occupancy of the building spaces [2]. If no
users are detected in the monitored space, inactive devices
can be disconnected; environmental setpoints for air condi-
tioners, heaters, and humidifiers can be decreased; lights can
be lowered or turned off.

The key requisite for implementing occupancy-driven
applications is an accurate, inexpensive, and non-intrusive
method for monitoring occupancy. Non-intrusive means that
the user is not required to have smartphones or RFID identifi-
cation systems, which provide information about its presence
within the space. Usually, such systems are referred to as
device-free, and exploit the networks of acoustic, inertial,
environmental and power sensors already installed in the
buildings [3].

Recently, many authors proposed to analyse data from
multiple sensors (electric power meters, accelerometers and
noise meters) to identify the user’s presence or absence in a
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space [4, 5]: variations of sensor time series, due to the arrival
or exit of a user from a space, are analyzed to infer a classifi-
cation template for the user’s presence/absence. Conversely,
[6, 7, 8] address the problem of identifying user activities by
analyzing the spectral fingerprint of the energy consumption
due to the used appliances during their activities. [9] inves-
tigate about the possibility of identifying the user activity by
analyzing energy consumption patterns from electrical appli-
ances.

Device-free sensing of building occupancy poses many
challenges, as any sensor shows a noisy behavior under cer-
tain conditions. For example, inertial sensors can cause spu-
rious detection deriving from pets movements; though CO2
sensors are less sensitive to their placement and to external
events, their efficiency is directly related to the ventilation of
the building. Therefore, robustness to noise is a key issue for
device-free sensor system. In this work, we present an al-
gorithm for extracting topological features from sensor time
series, to support the implementation of a device-free detec-
tion algorithm of presence/absence. Basing on the theory of
Persistent Homology, we evaluate the relevance of topolog-
ical features as their persistence (a topological event’s lifes-
pan) in the so-called barcodes [10]. The assumption is that
persistent features identify important events, while features
with a shorter lifespan correspond to noise. The result is
a topological fingerprint of the user’s presence, which can
be used in an unsupervised approach for state classification.
The main advantages brought by Persistent Homology are low
computational cost, and high resilience to noisy data.

2. TOPOLOGICAL DATA ANALYSIS

Topology is a branch of mathematics dealing with qualita-
tive information of an object: topology looks at the intrin-
sic and global properties of an object, such as its shape [11].
Recently, Topological Data Analysis (TDA) methods are in-
creasingly used to investigate and characterize multidimen-
sional datasets. The research on TDA was recently boosted by
the introduction of the Persistent Homology (PH) theory [12],
along with fast algorithms for its computation [13] and effi-
cient implementations [14]. The application scenarios include
shape and texture analysis [15], biological and molecular data
analysis [16], sensor networks [17], image and signal process-
ing [18, 19, 20]. In what follows, we offer a brief intuition on



Fig. 1. An example of the Rips-Vietoris complex associated
to a 2D point could, with the filtration parameter d induced by
the Euclidean distance betweenpints. At d = 0 the complex
is made of the 0-points, as shown in a.; increasing d, edges,
faces and tetrahedra enter the simplical complex.

PH; we refer the reader to [21] for a rigorous treatment of the
subject.

The core idea of Persistent Homology is to represent data
as filtered simplicial complexes. Given a simplicial complex
(for example, a triangle mesh), filtering the complex means
defining a rule to build the complex as a sequence of nested
sub-complexes. An example of filtered complex is the the
Vietoris-Rips complex, whose construction is shown in the
example of Figure 1: at the first stage of the filtration, only
the nodes are included; then, in subsequent steps, the edges
in the complex appear ordered by the distance between their
endpoints (the filtration parameter). There are many viable
choices on how to filter a complex associated to a dataset: this
is one of the main strengths of PH-based approaches. Once
the dataset is encoded as a filtered simplicial complex, one
evaluates the birth and death of topological events (homology
classes) while growing the filtration parameter: for example,
when connected components appear and when are merged,
when holes are created and when are closed off, and so on.
The lifespan of these events is stored in a stable invariant: the
i—barcode. A barcode in a given dimension ¢ is a collection of
horizontal bars in a plane: the horizontal axis corresponds to
the parameter to filter the complex, while the vertical axis rep-
resents an arbitrary ordering of homology generators in dim ¢
(see Figure 2 for an example of barcodes in dim 0 and 1). The
length of each bar is interpreted as the lifespan or persistence
of the corresponding generator: short bars are interpreted as
noise, while long bars as important topological features.

In this paper, we compute the persistence barcodes on
time series from multiple sensors placed in a room, to detect
the points in time when the room is occupied. The assump-
tion is that room occupancy is reflected by some topological
features in PH. To compute the barcodes, the first step is to
discretise the sensor time series and represent them as filtered
complexes, as described in the next Section.

Fig. 2. An example of two barcodes (dim 0 and 1) from the
experiment described in Section 3: they are computed from
F59, with W = 68
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Fig. 3. Matrix Representation of the Data

3. FEATURE EXTRACTION ALGORITHM

Given K different sensor time series, each of length M, we
represent them with a matrix (Figure 3): each column cor-
responds to the time series of a single sensor, whereas each
row corresponds to all sensor values sampled at a given time.
Then, we cluster rows into sliding windows F; [19]: each F;
corresponds to W time samples of all K sensors, with each
window sharing W/2 samples with the previous one. There-
fore, each F; can be seen as a point cloud, made of WW points
in the Euclidean space R”, where the coordinates correspond
to the output of the different sensors.

For each point cloud F; associated with a sliding win-
dow, we compute the Vietoris-Rips complex filtered by the
Euclidean distance between points, and compute the corre-
sponding barcodes. The analysis of the barcodes then gives
insights on the likelyhood of a window to correspond to a pe-
riod when the room is occupied. In particular, we analyse the
barcodes through a set of descriptors derived by the topolog-
ical features summerized in each barcode [20]: the number
of 0— and 1— topological events; the number of 0— and 1—
topological long events (i.e., events with lifespan greater than
a fixed threshold: 7y in dimension 0 and 7; in dimension 1);
and the average lifespan in dimension 0 and 1.

The feature extraction algorithm is summarised in Al-
gorithm 1. The computations have been carried out using
JavaPlex [22].

The set of descriptors is evaluated as a predictor of the



Algorithm 1 PH-based Algorithm for Feature Extraction
Step 1.
a. Group data in blocks of length W, overlapping of
W /2 each other
b. Compute the associated set of point clouds F;
¢. Mean-center and normalize each F;

Step 2.

For each Fj:

a. Compute the associated barcodes in dimension 0 and
1 (1e B()yi and Bl,i)

b. Count the topological events in By ; and By ;

c. Count the long topological events

d. Compute the average lifespan for each barcode

occupancy of the room. The detection procedure works as
follows: (i) the window F; for which the descriptor reaches
its highest values is selected; (ii) this selection is performed
over all the descriptors; (iii) the intersection among the set
of selected windows is evaluated. The detection of presence
occurs in the windows belonging to the intersection; and the
absence in the remaining windows.

4. EXPERIMENTS

The following subsections describe our scenario and the re-
sults we got in our preliminary study.

4.1. Experimental set-up

The detection of the user’s presence was performed using
time series acquired by three sensors: motion, acoustic, and a
power meters sensor. Acoustic and motion sensors are char-
acterized by a binary output: they return 1 if motion, or re-
spectively high level of environmental noise, is detected, and
0 otherwise. The output of the power meter is a scalar that
ranges from O to the level of consumed electric power.

The sensors’ time series were acquired at an average sam-
pling rate of 1 per minute, through a monitoring system in-
stalled in an office at the National Research Council of Italy
(CNR) in Pisa. The office is 25 m? and it is used by only one
employee. The typical working day at CNR ranges from 9.00
AM to 6.00 PM (Monday - Friday). Lamps, PCs and other
appliances such as printers, kettles or coffee machines, may
be present in the room.

The sensors deployed in the office communicate via Zig-
Bee protocol with a gateway based on the Raspberry PI board
which runs an integration middleware for sensing informa-
tion. The data collected by the gateway are stored on a cloud
infrastructure hosted at CNR. The cloud is organized as a set
of virtual machines based on an VMware ESX Server provid-
ing three kinds of services: storage, visualization through an
interactive dashboard, and tools for the analysis of data.

0-dim Long Features

—0-dim Long Features|
—Ground Truth
I

2
3
T
I

Counted Features
T g\

9
3

100 150 ZAO 2‘50
Number of Windows
Fig. 4. 0-dim Long Features. The graph of the number of

features (blue) is shown together with the ground truth graph
(red)

The data have been collected for one week asking the oc-
cupant to register the ground truth of the room occupancy.

The three time series were temporally aligned: a week
of acquisition produced 8840 samples for each time series.
So, the data matrix in Figure 3 has M = 8840 rows and
K = 3 columns. Rows have been grouped in sliding win-
dows of size: W = 18, 34, 68. For each value of the window
size W, we obtain a sequence of point clouds F; in R3, with
the corresponding Rips-Vietoris complex and persistence bar-
codes.

The number of long topological features, for each Fj,
was counted using different values for both thresholds 7 and
71. Precisely, we have characterized topological events on a
lattice of points (79, 71 ), both ranging in the interval [0.1, 0.9]
with step size 0.2.

4.2. Results
Relation between descriptors and room occupancy

Figure 4 shows the number of counted features for each Fj,
with W = 68. The comparison of this graph with the ground
truth suggests that the greater number of features is obtained
for those windows corresponding to the presence of the user
in the office. In general, features in dim 0 showed better cor-
relation with room occupancy than features in dimension 1.
This is probably due to the fact that O-dimensional features
are linked to the correlation between samples within the win-
dows considered, while features in dim 1 are indicators of
possible periodic pattern in the signal time series, which are
negligible in our data.

Dependence on the window size

Figure 5 shows the dependence of the 0—dim Long Features
on the window size WW. It shows that the more samples are in-
cluded within the same window, the more information can be



extracted: increasing the window size, the number of features
counted in windows corresponding to the user’s presence
increases. On the other hand, a smaller window size would
imply a lower number of features and may cause the loss of
useful information.

0-dim Long Features Vs Window Size
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Fig. 5. 0-dim Long Features vs. Window Size: each graph

shows the number of features counted in the corresponding
sliding window of size 18 in (a), 34 in (b), and 68 in (c). Note
that increasing the window size results in a larger number of
features.
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Fig. 6. Performance of the prediction algorithm: confusion
matrix after one week

Prediction performance

Figure 6 shows the prediction performance obtained with the
descriptor extracted from sensor time series with the values
W = 68 and 79 = 0.1, which provided the best set of de-
scriptors for the detection procedure. The values "Presence’
and "no Presence’ in the axes *Verified’ are the ground truth,
as registered by the room occupant; values "Presence’ and 'no
Presence’ in the axes Predicted’ are those obtained by our de-
tection algorithm. Figure 6 shows that the detection algorithm
detects a "Presence’, which is confirmed by the ground truth.
Instead, with a probability of 88% the detection algorithm de-
tects a “no Presence’, which is again confirmed by the ground
truth. The algorithm performance in our preliminary study
is promising compared to the results in [3], considering that
their period of experimentation is quite longer (one month vs
one week).

5. CONCLUSIONS AND FUTURE WORK

The results reported in the previous section show that PH-
based methods are useful to encode the information from low-
cost monitoring systems about human activity. A further anal-
ysis may be carried out in order to understand if the proposed
set of topological features may characterize more precisely
human activity, not limiting to the occupancy of a room. Vi-
able options for developing a topology-based activity detec-
tion may be: increasing the number of low-cost sensors used
for the data acquisition, increasing the computation of PH to
dimensions > 1, and complementing topological data analy-
sis with adaptive detection techniques.



(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

6. REFERENCES

Paolo Barsocchi, Erina Ferro, Luigi Fortunati, Fabio
Mavilia, and Filippo Palumbo, “Ems@ cnr: An energy
monitoring sensor network infrastructure for in-building
location-based services,” in High Performance Comput-
ing & Simulation (HPCS), 2014 International Confer-
ence on. IEEE, 2014, pp. 857-862.

Paolo Barsocchi, Mario GCA Cimino, Erina Ferro,
Alessandro Lazzeri, Filippo Palumbo, and Gigliola
Vaglini,  “Monitoring elderly behavior via indoor
position-based stigmergy,” Pervasive and Mobile Com-
puting, vol. 23, pp. 26-42, 2015.

P. Barsocchi, A. Crivello, M. Girolami, F. Mavilia, and
E. Ferro, “Are you in or out? monitoring the human
behavior through an occupancy strategy,” in 2016 IEEE
Symposium on Computers and Communication (ISCC),
June 2016, pp. 159-162.

W. Kleiminger, C. Beckel, T. Staake, and S. San-
tini, “Occupancy detection from electricity consump-
tion data,” in Int. Workshop on Embedded Systems For
Energy-Efficient Buildings, BuildSysl3, New York, NY,
USA, 2013, ACM, pp. 101-108.

D. Chen, S. Barker, A. Subbaswamy, D. Irwin, and
P. Shenoy, “Nonintrusive occupancy monitoring using
smart meters,” in Int. Workshop on Embedded Systems
For Energy-Efficient Buildings, BuildSysl3, New York,
NY, USA, 2013, ACM, pp. 91-98.

S. N. Patel, T. Robertson, J. A. Kientz, M. S. Reynolds,
and G. D. Abowd, “At the flick of a switch: Detecting
and classifying unique electrical events on the residen-
tial power line,” in Int. Conf. on Ubiquitous Computing,
UbiComp07, Berlin, Germany, 2007, Springer-Verlag,
pp. 271-288.

A. G. Ruzzelli, C. Nicolas, A. Schoofs, and G. M. P.
OHare, ‘“Realtime recognition and profiling of appli-
ances through a single electricity sensor,” in Int. Conf.
on Sensor Mesh and Ad Hoc Communications and Net-
works, SECON10, Boston, Massachusetts, USA, 2010,
IEEE ComSoc, pp. 1-9.

N. A. M. Rosdi, F. H. Nordin, and A. K. Ra-
masamy, “Identification of electrical appliances us-
ing non-intrusive magnetic field and probabilistic neu-
ral network (pnn),” in Int. Conf. on Power and Energy,
PECONI14, Kuching, Sarawak, Malaysia, 2014, IEEE,
pp. 47-52.

N. Klingensmith, D. Willis, and S. Banerjee, “Ex-
tracting events from spatial time series,” in nt. Work-
shop on Embedded Systems For Energy-Efficient Build-

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

ings,BuildSys13, New York, NY, USA, 2013, ACM, pp.
5-8.

Robert Ghrist, “Barcodes: The persistent topology of
data,” Bulletin (New Series) of the American Mathemat-
ical Society, vol. 45, pp. 61-75, jan 2008.

Allen Hatcher, Algebraic Topology, Cornell University,
New York, 2001.

H. Edelsbrunner and J. Harer, “Persistent homology -
a survey,” Contemporary Mathematics, vol. 453, pp.
257-282, 2008.

Afra Zomorodian and Gunnar Carlsson, “Computing
persistent homology,” Discrete & Computational Ge-
ometry, vol. 33, no. 2, pp. 249-274, 2005.

Nina Otter, Mason A. Porter, Ulrike Tillmann, Peter
Grindrod, and Heather A. Harrington, “A roadmap for
the computation of persistent homology,” 2017, preprint
on arXiv at https://arxiv.org/abs/1506.08903.

S. Biasotti, B. Falcidieno, D. Giorgi, and M. Spagnuolo,
Mathematical tools for shape analysis and description,
vol. 6 of Synth. Lect. Comput. Graph. Animat., 2014,

Natasa Jonoska and Masahico Saito, Discrete and Topo-
logical Models in Molecular Biology, Natural Comput-
ing Series. Springer Berlin Heidelberg, 2014.

V. De Silva and R. Ghrist, “Coverage in sensor net-
works via persistent homology,” Algebraic and Geo-
metric Topology, vol. 7, pp. 339358, 2007.

Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and
Afra Zomorodian, “On the local behaviour of spaces
of natural images,” International Journal of Computer
Vision, vol. 76, pp. 1-12, 2008.

Jose A. Perea and John Harer, “Sliding windows and
persistence: An application of topological methods to
signal analysis,” Foundations of Computational Mathe-
matics, vol. 15, no. 3, pp. 799-838, 2015.

Céssio M.M. Pereira and Rodrigo F. de Mello, “Persis-
tent homology for time series and spatial data cluster-
ing,” Expert Syst. Appl., vol. 42, no. 15, pp. 6026-6038,
sep 2015.

S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini,
D. Giorgi, C. Landi, L. Papaleo, and M. Spagnuolo,
“Describing shapes by geometrical-topological proper-
ties of real functions,” ACM Comput. Surv., vol. 40, no.
4, pp.- 12:1-12:87, 2008.

Andrew Tausz, Mikael Vejdemo-Johansson, and Henry
Adams, “JavaPlex: A research software package for per-
sistent (co)homology,” in Proceedings of ICMS 2014,



Han Hong and Chee Yap, Eds., 2014, Lecture Notes in
Computer Science 8592, pp. 129-136, Software avail-
able at http://appliedtopology.github.io/javaplex/.



