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Abstract—Particle filters are powerful methods for state esti-
mation in nonlinear/non-Gaussian dynamical systems. However
due to the heavy computational requirements, they may not
satisfy the real-time constraints in many applications requiring
a large number of particles. By means of distributed imple-
mentation, real-time particle filtering can be achieved. However,
the resampling stage in particle filters requires particle inter-
action which causes communication overhead. In this work, we
propose a distributed resampling algorithm based on Butterfly
Resampling previously described in the literature. We describe
three interaction schemes (i) the complete interaction, (ii) the
pairwise interaction where the nodes are constrained to com-
municate in pairs and (iii) the partial pairwise interaction in
which only one pair is allowed to communicate. The goal is to
diminish the communication cost in exchange for negligible loss
of effective sample size. We conduct experiments on a cluster
environment and compare our methods in terms of execution
time, communication time and effective sample size. We find
that the sparse interaction schemes show better performance for
distributed systems and they keep the effective sample size nearly
as high as the complete interaction scheme does.

I. INTRODUCTION

Particle filters (PFs) have been very popular and widely
used for nonlinear filtering problems since their introduction
by Gordon et al. [1]. However, the computational cost of
PFs increases linearly with the number of particles, which
makes it difficult to satisfy real-time requirements for PFs
with a large number of particles. A PF consists of three main
stages: propagation, update and resampling. The propagation
and the update stages are completely parallelizable, they do not
require any communication between the nodes. However in the
resampling stage, all the particles must interact with each other
which causes communication overhead. Although resampling
is inevitable for the stability of PFs [2], it is evidently
the bottleneck in the distributed implementation of particle
filters. Therefore, the main consideration is to minimize the
communication between the nodes in designing distributed
resampling algorithms, otherwise the communication overhead
prevents PFs from speeding up.

Over the last decade, the distributed implementation of PFs
has become popular as the need for fast real-time PFs has in-
creased. Bolic et al. [3] introduce two categories of distributed
resampling techniques: distributed resampling algorithms with
proportional allocation (RPA) and nonproportional allocation
(RNA) of particles. In the former, each node generates parti-

cles proportional to its total weight and performs a particle
exchange algorithm for load balancing. In the latter case,
the nodes perform a local resampling algorithm with a fixed
number of particles and exchange some of their particles to
decrease the weight variance among the nodes. Teulière et al.
[4] propose an RPA with a particle transition scheme based
on first matching. Mı́guez [5] introduces an unbiased local
selection (LS) method based on RNA and provides an analysis
on the importance weights of these methods. Balasingam et al.
[6] suggest an optimal particle selection for RNAs. Demirel et
al. [7] provide a parallel particle filtering library containing a
couple of particle exchange algorithms. Recently, distributed
particle filters with a proof of convergence have been intro-
duced. Vergé et al. [8] propose the double bootstrap filter with
a two level resampling method. Heine et al. [9] break down the
resampling stage into a sequence of constrained interactions of
particles, based on αSMC methodology described in Whiteley
et al. [2].

In this work, we propose a distributed resampling algorithm
based on Butterfly Resampling described in [9] with three
interaction schemes. The first scheme is straightforward, the
nodes can communicate with any other node and at the end
of the resampling stage the weights of the particles become
equal. The other two schemes are the main contributions of this
paper. They are designed to restrict the communication pattern,
and therefore they produce unequally weighted particles. In
the second scheme, the nodes can communicate only in
pairs and the pairs are formed in a way that the effective
sample size (ESS) remains high. In the last scheme, only
one pair is allowed to communicate at a time to prevent the
communication cost from increasing as the number of the
nodes increases. The rest of the paper is organized as follows:
In Section II, we study distributed implementation of particle
filters. In section III, we describe the interaction schemes with
a generic distributed resampling algorithm. In Section IV, we
show the simulation results and finally we draw conclusions
in Section V.

II. DISTRIBUTED PARTICLE FILTERING

Consider discrete time state space models having the fol-
lowing form:

x0∼p(x0), xt|xt−1∼p(xt|xt−1), yt|xt∼p(yt|xt)

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1634



Here, xt denotes the state vector and yt denotes the mea-
surement vector at time step t. The filtering problem is
the estimation of p(xt|y1:t) i.e. the posterior distribution of
the state vector given all the measurements so far. This
PDF could be obtained recursively in two stages: prediction
p(xt|yt−1) =

∫
p(xt|xt−1)p(xt−1|yt−1)dxt−1 and update

p(xt|yt) = p(yt|xt)p(xt|yt−1)/p(yt|y1:t−1).
A PF represents p(xt|y1:t) by a set of particles {(x(i)t , w

(i)
t ) |

i∈[N ]} where [N ] denotes the set {1, 2, . . . , N} and w
(i)
t

is the importance weight of the ith particle and N is the
number of the particles. The particles are propagated according
to the transition model and the weights are updated with
the measurement. In practice, after a few iterations most of
the weights are very close to zero and they require many
computational effort although they have little effect on the
result. This phenomenon is called weight degeneracy [10]. The
particles must be resampled according to their weights when
the variance of the weights exceeds a given threshold.

Now, suppose we are given a distributed system consisting
of M nodes. The particles are distributed over M nodes, such
that each node j has direct access only to L = N/M particles,

x
(j)
t := {x(1,j)t , x

(2,j)
t , . . . , x

(L,j)
t }

w
(j)
t := {w(1,j)

t , w
(2,j)
t , . . . , w

(L,j)
t }

In our implementation, all the nodes have the same role,
there is no master or slave node and after each iteration the
number of the particles on a node remains constant (L). The
propagation and update parts can be performed in embarrass-
ingly parallel fashion. A distributed PF can be summarized as
follows:

Algorithm 1 Distributed Particle Filter

x
(i,j)
0 ∼ p(x0), w

(i,j)
0 ← 1/N, for i ∈ [L]

for t = 1, . . . do
x̂
(i,j)
t ∼ p(xt | x(i,j)t−1 ), for i ∈ [L]

ŵ
(i,j)
t ← p(yt | x(i,j)t )w

(i,j)
t−1 , for i ∈ [L]

x
(j)
t ,w

(j)
t ← DistributedResampler(x̂(j)

t , ŵ
(j)
t )

end for

Here, j is the rank of the current node. DistributedResam-
pler is a generic function which takes the particles and their
weights as input parameters, performs a distributed resampling
algorithm and returns the resampled particles with the new
weights. We note that DistributedResampler does not have to
perform complete resampling and therefore the new weights
may not equal 1/N .

III. DISTRIBUTED RESAMPLING

In this section, we briefly explain Butterfly Resampling and
its parameters, then we describe the interaction schemes in
terms of these parameters and finally we give a distributed
resampling algorithm which takes the interaction schemes as
parameters.

A. Butterfly Resampling
Butterfly Resampling is an instance of Augmented Resam-

pling described in the same article [9]. Augmented Resampling
is performed in K steps and in each step the particles can
interact only a small number of other particles.

Now, let {Ak | k = 1, . . . ,K} be a set of doubly
stochastic transition matrices, each of size N × N and
(AK , AK−1, . . . , A1)

i,j = 1/N . These matrices are represen-
tations of the conditional independence structure of the par-
ticles. The nonzero elements Ai,jk 6= 0 denote the interaction
between ith and jth particle. The new particles are sampled
according to these interaction matrices by using the following
procedure:

Algorithm 2 Augmented Resampling

ŵ
(i)
t,0 ← ŵ

(i)
t , x̂

(i)
t,0 ← x̂

(i)
t , for i ∈ [N ]

for k = 1, . . . ,K do
for i = 1, . . . , N do
ŵ

(i)
t,k ←

∑
j A

i,j
k ŵ

(j)
t,k−1

x̂
(i)
t,k ∼

∑
j A

i,j
k ŵ

(j)
t,k−1δx̂(i)

t,k−1

ŵ
(i)
t,k

end for
end for
w

(i)
t+1 ← ŵ

(i)
t,K , x

(i)
t+1 ← x̂

(i)
t,K , for i ∈ [N ]

The symbol δx denotes the Dirac (unit) delta measure lo-
cated at x. There are many ways to choose the interaction ma-
trices, for example when K = 1 and Ai,j1 = 1/N for , i, j ∈
[N ], we obtain the standard complete resampling method.
In Butterfly Resampling, the main idea is to break down
the complete interaction matrix into well structured sparse
matrices so that non-trivial limits for the moments can be
established [9]. Let N = r1r2 . . . rK be the factorization of
N , then Ak matrices of Butterfly Resampling are formed as
follows:

Ak := IrK ⊗ · · · ⊗ Irk+1
⊗ Urk ⊗ Irk−1

⊗ · · · ⊗ Ir1
where the symbol ⊗ denotes Kronecker product and Urk is
rk× rk matrix which has 1/rk as every entry. We can see the
matrices satisfy the condition

∏
k Ak = UN and each matrix

Ak ensures that the particles interact in small groups consisting
of rk particles at step k.

B. Complete Interaction Scheme (CIS)
In this method, we factorize N as L × M . Resampling

is completed in two steps (K = 2) and the steps use the
interaction matrices A1 = IM ⊗ UL and A2 = UM ⊗ IL
respectively. We can easily see that the particles in the same
node fully interact with each other and there is no interaction
between the particles belonging different nodes in A1, thus
the first step requires no communication. On the other hand,
in the second step the particles need to interact across the
nodes. However, since after the first step the particles in the
same node have equal weights, the implementation of this step
is not complicated. The details are explained in Section III-E.
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C. Pairwise Interaction Scheme (PIS)

Here, similar to the previous scheme r1 equals L. In this
case we factorize the second radix r2 =M as 2× 2× . . .× 2
and the number of steps K becomes m + 1 where 2m=M .
For instance if M = 4 the matrices become,

A2 =
1

2L


IL IL · ·
IL IL · ·
· · IL IL
· · IL IL

 , A3 =
1

2L


IL · IL ·
· IL · IL
IL · IL ·
· IL · IL


The nodes are constrained to communicate in pairs. The
disadvantage of this technique is that to proceed to the next
step, the nodes have to wait the other nodes to finish the
previous step i.e. there are implicit communication barriers
between the steps. These implicit barriers significantly reduce
the performance of the resampling stage. However, in most of
the scenarios, the complete resampling is not needed. Partial
mixing of the weights could be enough to keep ESS above a
given threshold. Therefore we can stop resampling at earlier
steps. In Pairwise Interaction Scheme, we perform only two
steps, which corresponds to applying A1 and one of the other
2-radix matrices. The second matrix to be used is chosen in a
deterministic way in any order e.g. A2A1, A3A1, . . . , AKA1.
In this way, we get rid of the implicit barriers and we obtain
a more sparse interaction scheme. Furthermore, the butterfly
pattern distributes the weights over the nodes in m time steps
thereby providing a good weight balance.

D. Partial Pairwise Interaction Scheme (PPIS)

The second step of PIS requires M/2 communicating pairs,
which could still introduce communication overhead prevent-
ing scaling up. Therefore we further break down the matrices
Ak, k>1 of PIS into more sparse matrices. Here we only
explain how the matrix A2 is factorized, but the method can
be generalized without difficulty for the rest of the matrices.
We know A2 = IM/2 ⊗ U2 ⊗ IL and we define

Â2,l :=

I2M(l−1) · ·
· U2 ⊗ IL ·
· · IN−2Ml


We can see that A2 =

∏M/2
l Â2,l. The second matrix is chosen

from these sparse matrices {Âi,l | i 6= 1, i ∈ [K], l ∈ [M/2]}.
The key idea here is that only one pair is able to communicate
during resampling. Even though this scheme cannot keep ESS
as high as PIS does, the communication cost introduced is
significantly small because each node communicates every
M/2 time steps.

E. Distributed Resampling Algorithm

In this section, we describe a distributed resampling algo-
rithm which applies the interaction schemes described above.
The schemes essentially use two interaction matrices A1 and
B. The first matrix A1 is fixed for all the schemes and it equals
IM ⊗UL. The schemes differ in the second interaction matrix
B which inherently specifies the communication pattern of the
nodes. Let P(j)

t denote the set of the nodes that jth node is

able to communicate with in time step t. In CIS, P(j)
t is the

whole node set, in PIS, P(j)
t consists of jth node and its target

node, and in the last interaction scheme (PPIS), P(j)
t is mostly

formed by only jth node, but it contains also the target node
every M/2 time steps. Applying A1 is straightforward; each
node performs a local resampling. After that, the weights of
the particles belonging to the same node become identical. By
exploiting this feature, the second step can be easily performed
by calculating the particle duplicate numbers (offspring num-
ber) of the nodes. Let L denote the set {L(j) | j ∈ P(j)

t }.
Here L(j) is the offspring number of the jth node after the
second step satisfying the condition

∑
j∈P(j)

t
L(j) = #P(j)

t ·L
where the symbol # denotes the cardinality of a set. L can be
calculated by using the standard resampling techniques such
as multinomial and residual resampling [11].

The difference between L(j) and L determines whether jth
node is receiver or sender. In other words, if L̂(j) = L(j) −L
has a positive value, jth node has L̂(j) surplus of particles to
be sent, otherwise it means jth node receives |L̂(j)| particles.
A matching algorithm is needed to match the nodes with
surplus of particles with the nodes with shortage of particles.
A good matching should minimize the number of communi-
cating pairs. Here, we describe a greedy matching algorithm,
however other approaches also can be used [7]. Let T (τ, ν)
represent the number of the particles to be sent from τ to
ν. The matching algorithm takes a sender τ with a particle
surplus L̂(τ) and schedules a transmission of min(L̂(τ), |L̂(ν)|)
particles to the first receiver ν and the values of T (τ, ν), L̂(τ)

and L̂(ν) are updated accordingly. The algorithm iterates over
the receivers until L̂(τ) becomes zero. Once the transmission
of the particles is finished, the weights of the particles are set

to

∑
j∈P(j)

t
W (j)

#P(j)
t ·L

.

Algorithm 3 Distributed Resampling Algorithm

x̃
(j)
t ← ResampleLocally(x̂(j)

t , ŵ
(j)
t )

W← GatherWeights(P(j)
t )

L← OffspringNumbers(W,#P(j)
t ·L)

L̂(i) = L(i) − L, for i ∈ P(j)
t

T ← Match(L̂)
if L̂(j) > 0 then

Send(T (j, ν)), for ν ∈ P(j)
t

else
Receive(T (τ, j)), for τ ∈ P(j)

t

end if

ŵ
(i,j)
t ←

∑
j∈P(j)

t
W (j)

#P(j)
t ·L

, for i ∈ [L]

IV. EXPERIMENTAL RESULTS

In this section, we present our simulation results. We
compare the interaction schemes in terms of execution time,
communication time and effective sample size. We imple-
mented our methods in C++ with Open MPI [12], and we
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(b) Average communication time of a single time step.

Fig. 1: The comparison of performances of the interaction schemes. (N = 8192)

used a cluster consisting of nodes having Intel(R) Xeon(R)
CPU E5-2650L v3 @ 1.80GHz. We ran the simulations on 16
separate cores each belonging to a different node.

A. Lorenz System

We use the application of tracking the state of the chaotic
Lorenz system to evaluate our methods. The Lorenz system
is non-periodic and highly nonlinear, and small errors in its
estimated state result in larger errors in a later state [13]. We
use the discrete time version as the state transition model in our
simulations described in [5]. The state vector is 3-dimensional
(x1,t, x2,t, x3,t) and it is updated over time according to the
following propagation equations:

x1,t = x1,t−1−ST (x1,t−1−x2,t−1)+
√
Tu1,t

x2,t = x2,t−1+T (Rx1,t−1−x2,t−1−x1,t−1x3,t−1)+
√
Tu2,t

x3,t = x3,t−1−T (Bx3,t−1−x1,t−1x2,t−1)+
√
Tu3,t

and we can only make noisy measurements on the first
dimension.

yt = x1,t + νk

S,R,B are the system constants and their default values
are 10, 28, 8/3 respectively. T is the time step which equals
10−2 time units and νt, ui,t are zero-mean Gaussian white
noise with the variance σ2 = 1. The initial state is dis-
tributed from a Gaussian distribution with the standard mean
(−5.91652,−5.52332, 24.5723) and the covariance 10−2 · I3.

B. Execution and Communication Time

We ran our simulations for 4096 time steps and N = 8192
particles. We recorded the filtering time and the amount of
time spent in communication. Then we calculated the average
execution time and communication time for a single time step.
The results are plotted in Fig. 1. The communication time
in CIS increases almost linearly with the number of nodes
M . It clearly hinders the speed-up to be gained through the
parallelization. The underlying reason for this problem is that
the number of transmitted particles increases as M grows [14].
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Fig. 2: Effective sample size ratio against time for N = 8192
and M = 16. The ESS curves of Complete and Pairwise Inter-
action Schemes overlap. (ESS ratio is obtained by ESS/N .)

Besides, there is no restriction on the communication pattern.
It is possible for a node to communicate with many other
nodes in a time step, which may bring about an unbalanced
communication load. In PIS, the nodes are constrained to
communicate in disjoint pairs, therefore the communication
cost introduced is less than that in CIS. However increasing
M also increases the number of communicating pairs and at
some point it starts to lower the performance of the particle
filter. In PPIS, there are only two communicating nodes at
any time step regardless of M , that is increasing M does not
impose an additional communication cost. As a result, PPIS
benefits the most from linearly decreasing number of local
particles (L).

C. Effective Sample Size

In Fig. 2 we show the effective sample size of the inter-
action schemes in each time step. The results are obtained
for M = 16 nodes and N = 8192 particles. For better
visualization, ESS ratio is smoothed by a 10-step moving
average filter. We see that ESS curves of PIS and CIS are
so close that they overlap, which confirms that the complete
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interaction is indeed not needed for many models including
highly nonlinear models such as the Lorenz System. In PPIS,
ESS is lower than those in the other schemes, and the variance
of ESS is relatively high. This is the price to pay for sparse
communication. Lastly, we observe that running parallel PFs
without communication is not stable as stated in [2]. If the
nodes do not communicate with each other, eventually one
node dominates the others by holding all the weights and ESS
decreases below N/M .

V. CONCLUSION

In this article, we propose three different interaction
schemes for distributed resampling. First, we describe a simple
interaction scheme where the nodes fully interact with each
other and at the end of the resampling stage all the particles
have equal weights. Second, we put some constraints on the
communication patterns such that the nodes communicate only
in pairs during resampling. In this way, the communication
overhead is significantly reduced and the effective sample size
is kept high. In the last scheme, we further make the interaction
more sparse; only one pair is allowed to communicate during
resampling. Although the effective sample size is affected
negatively, this scheme is practical when the number of the
nodes is high (say more than 8). The experimental results show
that the communication overhead makes Complete Interaction
Scheme impractical. Pairwise interaction Scheme keeps the
effective sample size as high as the complete resampling does
and it significantly decreases the communication time. The last
method, Partial Pairwise Interaction Scheme, yields the best
performance in terms of execution time, however the effective
sample size is reduced noticeably and its variance is relatively
high.
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