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Abstract—Speech Synthesis (SS) and Voice Conversion (VC)
presents a genuine risk of attacks for Automatic Speaker Veri-
fication (ASV) technology. In this paper, we evaluate front-end
anti-spoofing technique to protect ASV system for SS and VC
attack using a standard benchmarking database. In particular,
we propose a novel feature set, namely, Energy Separation
Algorithm-based Instantaneous Frequency Cosine Coefficients
(ESA-IFCC) to detect the genuine and impostor speech. The
experiments are carried out on ASV Spoof 2015 Challenge
database. On the development set, the score-level fusion of
proposed ESA-IFCC feature set with Mel Frequency Cepstral
Coefficients (MFCC) gave an EER of 3.45 %, which reduced
significantly from MFCC (6.98 %) and ESA-IFCC (5.43 %) with
13-D static features. The EER decreases further to 2.01 % and
1.89 % for ∆ and ∆∆ features derived from proposed ESA-
IFCC features, respectively. The overall average error rate for
known and unknown attacks in evaluation set was 6.79 % for
ESA-IFCC and was significantly better than the MFCC (9.15 %)
features.

Index Terms—Teager Energy Operator, Energy Separation
Algorithm, Instantaneous Frequency Cosine Coefficients, SSD,
GMM, EER.

I. INTRODUCTION

Automatic Speaker Verification (ASV) or voice biometrics
is the task to authentic the claimed person’s individuality from
his or her voice with the help of machines [1]. However, prac-
tical ASV systems are vulnerable to biometric attacks known
as spoofing. The major forms of attacks known today includes,
voice conversion, speech synthesis, identical twins, replay, and
impersonation, which are known to degrade performance of
ASV systems [1]. The general countermeasure approach is one
of the solutions to focus on feature extraction and statistical
pattern recognition techniques. In particular, feature extraction
forms key task for spoof speech detection (SSD). The aim is to
distinguish between genuine and impostor speech by capturing
the key discriminative features between two speech signals.
This might propose that front-end side should be focused more
for countermeasures of spoofing than on the sophisticated
classifiers. This view is supported by the results of the recent
ASV Spoof 2015 Challenge, during INTERSPEECH 2015 [1]-
[2].

Most of the ASV systems today use Fourier transform (FT)
magnitude-based features from the speech signal. In general,
universally used features for speech signal are Mel Frequency
Cepstral Coefficients (MFCC) [3] and Linear Prediction Cep-

stral Coefficients (LPCC) [4] (i.e., implicit LP spectrum) that
captures only magnitude information. The access to extract
features from phase spectrum were not as suitable as magni-
tude spectrum counterpart of a signal [5] and [6]. However, the
phase characteristics of speech are also found to be significant
as the magnitude for speaker characterization [7], [8]. Studies
have been reported to use Fourier transform phase-based
features, such as, Modified Group Delay (MGD) features
[9] and [10], temporal modulation [11] to detect genuine vs.
impostor speech. Another way to decompose a signal, is by
using Hilbert transform, it is the product of a slowly-changing
envelope and a rapidly-changing fine time structure. This study
indicates that the envelope carry significant information for
speech reception, whereas for pitch perception and sound
localization, the fine structure is important. When these two
features clashes, location of a sound is determined by the fine
structure, however, the words are analyzed by the envelope
[12].

In this paper, we propose Energy Separation Algorithm-
based Instantaneous Frequency Cosine Coefficients (ESA-
IFCC) feature set. Energy Separation Algorithm (ESA) algo-
rithm utilizes nonlinear Teager-Kaiser Energy Operator (TEO),
that estimates energy of a monocomponent signal as the
product of its squared amplitude and frequency [13]. If the
frequency of a signal changes immediately then, the TEO
algorithm effectively tracks the instantaneous frequency (IF)
information. If the signal has a lot of wide range of frequency
components (such as in speech signal), then the signal has
to be bandpass subband filtered (as TEO works effectively on
monocomponent signals) and then ESA is applied at the output
of each subband signals. Temporal average is enumerated to
obtain L-dimensional IF coefficients (IFCs) for each frame.
Discrete Cosine Transform (DCT) is applied on IF to obtain
stabilized cepstral features, i.e., proposed ESA-IFCC feature
set [14]. Authors proposed to emphasize Fourier Transform
(FT) phase information via IF computation using ESA, in
ESA-IFCC. The performance of ESA-IFCC features is com-
pared with MFCC for SSD task on ASV Spoof 2015 Challenge
database.

II. ENERGY SEPARATION ALGORITHM (ESA)

According to the Teager [15], the vortex-flow interactions
are the true source of sound production, which are nonlinear
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Fig. 1. Schematic diagram for extraction of proposed ESA-IFCC feature set. The 3-D plot before DCT block is corresponding to entire utterance.

in nature. Teager derived an algorithm, that uses a nonlinear
energy tracking operator called as TEO (in discrete-time) for
speech signal analysis, which was tough task to model the
time-changing vortex-flow. The concept was further extended
on continuous-time domain by Kaiser [13].

A. Teager-Kaiser Energy Operator

Newton’s second law of motion for an oscillator with mass
m and spring constant k describing following differential
equation

d2x

dt2
+
k

m
x = 0, (1)

and its solution consists of a sinusoidal signal x(t) =
Acos(Ωt + φ), where A is the amplitude of the oscillation,
Ω is frequency of oscillations (rad/sec) and φ is the initial
phase (rad). The sum of the potential and kinetic energy gives
the system’s total energy E, i.e.,

E =
1

2
kx2 +

1

2
mẋ2 ⇒ E =

1

2
mΩ2A2, (2)

where Ω = dφ(t)/dt. Taking this analysis under consideration,
Teager and then Kaiser [13], proposed the TEO for discrete-
time signal x[n] = Acos(ωn+ φ), i.e.,

En = Ψd{x(n)} = x2(n)− x(n− 1)x(n+ 1) ≈ A2ω2, (3)

where En gives the running estimate of signal’s energy and
in Ψd{.} d is for discrete-time case. A simple algorithm for
nonlinear energy tracking operator is referred to as TEO for
analysis of signal with the observation and belief that hearing
is the process of detecting energy [13].

To estimate the individual contribution of amplitude a[n]
and frequency ω[n] of signal, Maragos et. al. [16], [17] devel-
oped an energy separation algorithm (ESA) using nonlinear
energy operator that tracks the instantaneous energy of the
AM-FM signal to separate the signal into its amplitude and

frequency components. Both amplitude and frequency are
function of energy in a speech signal [18]. However, ESA
is carried out on single speech resonance, as speech itself is a
combination of several resonances, and hence, we require to
separate resonances with bandpass subband filtering. The IF
ω[n] and AE a[n] at any time instant of the AM-FM modulated
signal x[n] is given by [19]:

a[n] ≈ 2Ψd{x[n]}√
Ψd{x[n+ 1])− x[n− 1]}

, (4)

ωi[n] ≈ arcsin

√
Ψd{x[n+ 1]− x[n− 1]}

4Ψd{x[n]}
. (5)

Eq. (4) and Eq. (5) are w.r.t. symmetric approximation of
derivative, i.e., y[n] = x(n+1)−x(n−1)

2 . The frequency estima-
tion part assumes that 0 < ωi[n] < π

2 because the computer
implementation of arcsin(u) function assumes that |u| < π

2 .
Thus, this discrete ESA can be used to estimate IF < 1/4
the sampling frequency of signal [16]. The IF of a signal
possibly explained as the frequency of the sinusoid that fits the
given signal locally. The IF is modeled as the superposition of
slow and fast-changing factor. The average formant frequency
values are modeled by slow-changing factor and frequency
variations around the formant frequency are modeled by fast-
changing factor.

III. PROPOSED ESA-IFCC FEATURES

Fig. 1 shows the block diagram of proposed ESA-IFCC
feature set. Here, the input speech signal is first split into
N frequency bands or subband signals. The ESA is then
applied onto each N bandpass (subband) filtered signals to
obtain corresponding AEs and IFs. Furthermore, we have
discarded the AE and taken only IF. IFs are computed for
each of the narrowband components. The IF are disjointed
into short frames of 20 ms duration, with a shift of 10 ms, and
obtained L-dimensional IF coefficients (IFCs) for each frame
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Fig. 2. Spectrographic analysis (a) speech signal (b) corresponding spectrogram (c) spectral energy density of 40 subband filtered signals (i.e., N=40 in Fig.
1). Panel I for natural speech, Panel II for SS speech, and Panel III for VC speech.

with temporal average computation. The redundancy among
IFCs is exploited to obtain a low-dimensional representation
by employing DCT (that has energy compaction property) and
thus, retaining first few DCT coefficients. The low-dimensional
features obtained by applying DCT on IF coefficients is
referred to as ESA-based Instantaneous Frequency Cosine
Coefficients (ESA-IFCC). IFCC along with their ∆ and ∆∆
features were appended to get higher-dimensional cosine fea-
tures denoted as ESA-IFCC.

Fig. 3. AM-FM decomposition (a) speech signal, (b) AE, (c) IF of filtered
narrowband signal at fc = 1500 Hz (i.e., for N=8 in Fig. 1) and Fig. 3(d)-
(e) amplitude envelope and instantaneous frequency, respectively, of speech
segment shown with dotted box in Fig. 3(a).

Fig. 3(a) shows the plot of a genuine speech utterance and
Fig. 3(b) and Fig. 3(c) shows the respective AE and IF of
a narrowband filtered signal around 1500 Hz for a speech
signal shown in Fig. 3(a). The output is possibly decomposed
into its corresponding AE and IF from the filterbank of every
narrowband component as shown in Fig. 1. The IF in Fig. 3(c)
is centered around 1500 Hz and shows spurious fluctuations

on both side that makes it difficult to analyze and interpret
the vocal tract system characteristics [14]. There could be two
reasons for IF that has spurious fluctuations in a speech signal
and they are:

• When the amplitude approaches to zero, then the large
fluctuation are been observed for IF. For the region 4.4
to 4.5 s Fig. 3(c), i.e., unvoiced region have more changes
because of narrowband component has low energy in that
region as shown in Fig. 3(d).

• On the other hand, the region from 4.2 to 4.25 s and
4.3 to 4.4 s as in Fig. 3(c), which is voiced regions have
the changes in IF connected to impulse-like nature during
speech production [14].

This is because the IF computed from the speech signal
contains the information from both vocal tract system and exci-
tation source. As a result, IF shows impulse-like discontinuities
at the instants of glottal closure [20]. As a result, at the instants
of Glottal Closure Instants (GCI), discontinuity of impulses
are observed in IF. The impulse response of vocal tract
system during production of a speech signal originated GCI
successively to yield a speech signal. The phase discontinuity
occur due to superposition of impulse response that gives us
the large amplitude peaks in IF at locations of GCI.

A. Butterworth filterbank

The Butterworth filter provides a maximally flat response
(i.e., the first 2n − 1 derivatives for the power function w.r.t.
frequency are zero and hence, has no ripples) in the passband.
In this usually, Butterworth filterbank is used with filters
placed according to linear frequency scale. Fig. 2 shows the
spectrographic analysis of natural (panel I), SS (panel II) and
VC (panel III) speech signals. Fig. 2(a) shows the time-domain
speech signal and its corresponding spectrogram is shown in
Fig. 2(b), whereas the spectrogram obtained after 40 subband
Butterworth filtered signals is shown in Fig. 2(c). It can
be observed that the higher frequency regions corresponding
to the higher spectral amplitude (designating the vocal tract
resonances, also referred to as formants) are more emphasized
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TABLE I
RESULTS IN TERMS OF EER (%) ON DEVELOPMENT DATASET SCORE-LEVEL FUSION AS PER EQ. 7

Feature 1 # EER (%) for varying α Feature 20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency Range
static 6.98 6.72 6.36 6.00 5.69 5.40 5.24 5.30 5.54 6.63 8.16

MFCC ∆ 6.75 6.25 5.84 5.36 4.83 4.42 4.13 3.88 3.85 4.27 5.29 100-3000 Hz ESA-IFCC
∆∆ 6.14 5.71 5.29 4.81 4.31 3.98 3.74 3.70 3.85 4.56 5.79 13-D
static 6.98 6.28 5.67 5.05 4.48 4.17 3.91 3.80 4.06 4.78 6.38

MFCC ∆ 6.75 4.05 2.76 2.27 2.18 2.34 2.56 3.28 4.17 5.67 7.47 100-7800 Hz ESA-IFCC
∆∆ 6.14 2.98 2.17 1.98 2.12 2.42 3.00 3.63 4.62 5.75 7.18 40-D
static 6.98 6.57 6.13 5.67 5.18 4.66 4.16 3.75 3.45 3.62 5.43

MFCC ∆ 6.75 5.58 4.50 3.72 3.14 2.71 2.30 2.01 2.02 2.71 6.22 100-7800 Hz ESA-IFCC
∆∆ 6.14 5.10 4.08 3.31 2.82 2.41 2.02 1.89 2.00 2.76 6.59 13-D

in natural speech, while it is less emphasized for SS speech and
for VC speech, i.e., the formants in spoofed speeches are not at
all visible. Hence, it could be the speaker-specific information
that can make the natural, SS and VC distinguishable.

The filter must be as wide as possible to include the desired
formant modulations. However, narrow enough to exclude the
interference of neighboring formants. The center frequencies
of the bandpass filters are linearly-spaced and used to extract
the component AM-FM signals of the speech segment and then
determine the modulations around these center frequencies.
Authors have chosen linearly-spaced filterbank for Butterworth
filter as opposed to other frequency scale as Mel scale,
Equivalent Rectangular Bandwidth (ERB) scale (this is in line
with the recent finding reported in [14]).

IV. EXPERIMENTAL RESULTS

In this paper, we use ASV Spoof 2015 Challenge database
that was created for the ASV spoofing and countermeasures
challenge, and it comprises of genuine and impostor speech
data [1]. Brief details of database are given in [1], [21]. The
ESA-IFCC features were extracted using 40 channel linearly-
scaled 3rd order Butterworth filterbank for frequency range
of 100-7800 Hz. For each narrowband component, TEO-
based ESA is applied for computing AM-FM components.
IF were computed for each of the narrowband components.
Furthermore, these IFs were averaged over short-time windows
of 20 ms duration, shifted by 10 ms, to obtain 13-D ESA-IFC
features. The ESA-IFCC were obtained by applying DCT on
IFCs and retaining the first 13 coefficients in the transformed-
domain. The 13-D ESA-IFCCs, together with their dynamic
and acceleration features were used to build the SSD system.
We have used Gaussian Mixture Model (GMM) with 128
mixtures for modeling the classes corresponding to genuine
and impostor speech utterances. Final scores are represented
in terms of Log-Likelihood Ratio (LLR). The decision of the
test speech being genuine or impostor is based on the LLR,
i.e.,

LLR = log(LLK Model1)− log(LLK Model2), (6)

where LLK Model1 and LLK Model2 are the likelihood
scores from the GMM for the genuine and impostor trials,
respectively. To explore the possible complementary informa-

tion captured by MFCC and ESA-IFCC features, we use their
score-level fusion, i.e.,

LLKcombine = (1− α)LLKfeature1 + αLLKfeature2, (7)

where α equal to weight of fusion.

A. Results on Development Dataset

Results for MFCC and proposed ESA-IFCC feature set
are shown in Table I. From the results, proposed feature
set captures speaker-specific information embedded in natural
speech (as SS and VC speech does not exactly match the
human speech) and hence, there exists differences between
natural vs. spoofed classes. Table I shows that the ESA-
IFCC features produce much lower % Equal Error Rate (EER)
than the MFCC alone, ESA-IFCC features that are capable to
distinguish genuine vs. impostor speech (i.e., for SS and VC,
the features are comparable different than those for human
speech).
It was found that linearly-scaled equi-spaced filters are more
suitable for IF estimation than the ERB-scaled varying band-
width filters. In the case of gammatone filterbank, the band-
width increases at high frequencies, making the estimation
of IF less reliable. However, authors have used Butterworth
filter that has nonlinear phase that can be approximated as
linear over smaller frequency regions. For given 16 kHz
sampling frequency, we have available bandwidth of 7800
Hz that is divided into 40 equi-spaced frequency regions of
width (fH − fL)/40 Hz. The phase response around each
(fH − fL)/40 Hz width is mostly found to be linear (as
observed in authors recent study reported in [22]).

Furthermore, the score-level fusion of these features was
done as per Eq. (7) and is shown in Table I. It was observed
that for almost equal weighted fusion of MFCC and ESA-
IFCC score, the % EER of MFCC (6.98) and ESA-IFCC
(5.43) reduces to 3.45 % for static features similar pattern was
observed for ∆ and ∆∆ for higher frequency range of 100-
7800 Hz. The contribution of a particular system is decided
by the weight of fusion (i.e., α). From Table I, it is observed
that most of the system contribution was done with ESA-
IFCC features as the parameter α most of time was biased
towards ESA-IFCC. Therefore, it can be said that the ESA-
IFCC features have more contribution in decreasing the %
ERR and hence, could classify in a more better way for SSD.
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TABLE II
RESULTS IN % EER ON EVALUATION DATASET FOR EACH SPOOFING ATTACK. BOTH KNOWN AND UNKNOWN ATTACKS. +:SCORE-LEVEL FUSION

Features Known Attacks Unknown Attacks All Avg.S1 S2 S3 S4 S5 Avg. S6 S7 S8 S9 S10 Avg.
A:MFCC 2.34 9.57 0.00 0.00 9.01 4.18 7.73 4.42 0.3 5.17 52.99 14.12 9.15

B:ESA-IFCC 2.68 4.87 0.00 0.00 12.87 4.08 10.9 2.4 3.57 3.33 37.37 9.514 6.79
A+B 0.78 3.39 0.00 0.00 5.45 1.92 4.19 1.22 0.11 1.80 54.73 12.41 7.16

From Table I, the proposed features capture the complementary
information that was not observed from MFCC alone. The %
EER, is very less for score-level fusion of the MFCC and
ESA-IFCC.

B. Results on Evaluation Dataset

Table II shows the results for evaluation dataset with known
and unknown spoofing attacks. It was observed that SS attacks
(S3, S4) were easily detected for known attacks while S10
(MARY TTS) in unknown attacks was most difficult task to
detect. These results show that performance degrades signif-
icantly with unknown attacks. The average performance for
the unknown attacks is dominated by the performance for S10
then the performance of known attacks. The overall average
error rate for known and unknown was 6.79 % for ESA-IFCC
and was significantly better than the MFCC (9.15 %) features.
The score-level fusion (when performed with the fusion factor
α = 0.8) gave the overall average EER of 7.16 % due to
dominance of S10 unknown attack. However, with score-level
fusion of MFCC and ESA-IFCC, other attacks from S1 to S9
(known and unknown attacks) were detected reasonably well.

V. SUMMARY AND CONCLUSIONS

This study presented the effectiveness of ESA-IFCC feature
set in capturing speaker-specific information. The computation
of IF is mainly affected by the parameters of the filterbank,
namely, number of channels, shape of subband filters, etc.
The proposed ESA-IFCC features shows the improvement on
combining with MFCC features to detect genuine vs. impostor
speech. The use of IF to capture perceptual information proves
to be very effective. It was observed that on the standard
dataset provided for the challenge, the score-level fusion of
the MFCC and ESA-IFCC features gave quite low % EER on
development dataset than the MFCC alone. The authors would
like to explore use of ESA-IFCC features for robustness in
presence of additive or channel noise and its relative effects
of various types of spoofed speech.
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