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Abstract—This paper proposes a new algorithm for image
inpainting algorithm based on the matrix rank minimization
with nonlinear mapping function. Assuming that each intensity
value of a nonlinear mapped image can be modeled by the
autoregressive (AR) model, the image inpainting problem is
formulated as a kind of the matrix rank minimization problem,
and this paper modifies the iterative partial matrix shrinkage
(IPMS) algorithm and provides an inpainting algorithm, which
estimates a nonlinear mapping function and the missing pixels
simultaneously. Numerical examples show that the proposed
algorithm recovers missing pixels efficiently.

Index Terms—image inpainting, matrix rank minimization, AR
modeling, matrix recovery, manifold learning

I. INTRODUCTION

This paper deals with digital image inpainting, which is
the technique of reconstructing small damaged portions of an
image. Various methods have been proposed to achieve the
recovery of missing pixels, and there two kinds of method.
One is based on the image properties such as smoothness of
images [1], [2], and the other algorithms recover images by
interpolating the missing pixels using the intensity values of
neighbor pixels [3], [4]. In [5], assuming that a textured image
is modeled as the autoregressive (AR) model, the inpainting is
achieved by identifying the AR model. In [6], [7], a textured
image is modeled as a state space representation, matrix
rank minimization approaches are proposed. The AR model
and rank minimization based algorithm has been proposed
in [8], which assumes that the value of each pixel is a
linear combination of the neighbor pixels and estimates the
missing values by minimizing a Hankel-like matrix. While
the inpainting performance of AR model based algorithm
depends on given order of AR model, this algorithm estimates
missing intensity values and the model order simultaneously
and therefore recovers missing pixels well.

This paper focuses on the AR model and rank minimization
based algorithm [8] and provides a new low-rank approach
to image inpainting. While the AR model based algorithms
achieve high inpainting performance when the AR model is
suitable for an image, actual images are not always modeled
by the AR model properly, and an inpainting performance
becomes worse. In order to improve a performance, this paper
assumes that an image can be modeled by a nonlinear AR
model, where nonlinear mapped image is modeled by a linear
AR model, and provides a new algorithm based on a low-rank
approach by modifying the iterative partial matrix shrinkage

(IPMS) algorithm [9]. The proposed algorithm estimates inten-
sity values of missing pixels and a nonlinear mapping function
simultaneously. Numerical examples show the effectiveness of
the proposed algorithm compared with other algorithms.

II. LOW-RANK AND LINEAR AR MODEL APPROACH

This section introduces a low-rank and linear autoregres-
sive (AR) model approach to image inpaiting based on the
algorithm proposed in [8].

Let xi,j denote the intensity value of a 2D gray level image
at (i, j), where 1 ≤ i ≤M and 1 ≤ j ≤ N . We assume here
that an image is modeled by the AR model where xi,j satisfies

K∑
l=−K

K∑
m=−K

al,mxi+l,j+m + di,j = 0, (1)

where a0,0 = 1, and di,j denote the modeling error, which is
independent of xi,j and zero mean. This model can describe
a texture of the image well and is used in several image
inpainting algorithms such as [5]. Then the inpainting problem
is to estimate the intensity values xi,j of the missing region
using those of the known region. Let Ω and Ωc denote the
index sets of pixels in the known region and the missing
region, respectively. If the model order K is known, the image
inpainting problem based on the AR model is formulated as
follows,

Find xi,j for (i, j) ∈ Ωc

s.t. xi,j = x∗
i,j for (i, j) ∈ Ω∑

i

∑
j

(
K∑

l=−K

K∑
m=−K

al,mxi+l,j+m

)2

≤ ϵ

,

(2)

where x∗
i,j denotes the intensity value of known region, and

ϵ is a given constant which denotes the upper limit of the
modeling square error. In this problem, design variables are
al,m and xi,j for (i, j) ∈ Ωc.

The problem (2) can be solved by estimating AR coefficients
al,m and missing variables xi,j ∈ Ωc alternately. However,
the AR model order K is usually unknown, and [8] reported
that the algorithm does not work well when the model order
K is misestimated. Therefore, assuming the model order K
is small, [8] proposed an inpaiting algorithm estimating the
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missing values with low-order AR model. Let us define xi,j

and X respectively by

xi,j = [ xi−K,j−K xi−K,j−K+1 · · · xi−K,j+K

xi−K+1,j−K xi−K+1,j−K+1 · · · xi−K+1,j+K

· · ·
xi+K,j−K xi+K,j−K+1 · · · xi+K,j+K ]T

∈ R(2K+1)2 ,
(3)

and

X = [ xK+1,K+1 · · · xK+1,N−K

xK+2,K+1 · · · xK+2,N−K

· · ·
xM−K,K+1 · · · xM−K,N−K ]T

∈ R(M−2K)(N−2K)×(2K+1)2 . (4)

The vector xi,j consists of neighbor pixels of xi,j used in
the AR model, and X is the Hankel-like structured matrix
whose row is xi,j . To simplify the notation, we define
X ⊂ R(M−2K)(N−2K)×(2K+1)2 as the set of matrices of the
structured matrix defined in (4). If the di,j = 0 in (1), X
satisfies

Rank(X) = (2K + 1)2 − 1. (5)

Since K is unknown and assumed to be small, the image
inpainting problem is formulated by modifying (2) as follows,

Minimize Rank(Z)
s.t. ∥Z −X∥2F ≤ ϵ

xi,j = x∗
i,j for (i, j) ∈ Ω

X ∈ X

, (6)

where xi,j is an element of X , which is defined according to
(3) and (4). In this problem, X and Z are design variables.

Since the matrix rank minimization problem is NP hard in
general, the problem (6) is defficult to solve. Then we usually
apply the nuclear norm and Lagrange relaxations and obtain
the following convex problem,

Minimize γ∥Z∥∗ + 1
2∥Z −X∥2F

s.t. xi,j = x∗
i,j for (i, j) ∈ Ω

X ∈ X
, (7)

where γ is a given constant, and ∥Z∥∗ denotes the nuclear
norm of the matrix Z, which is equal to the sum of its
singular values. While the nuclear norm minimization is used
in various low-rank approaches in signal processing, it causes
signal distortion since the power of signals, which is equal to
the sum of squared singular values, is reduced by minimizing
its nuclear norm. To avoid this signal distortion, [9] proposes
a problem of minimizing the sum of non-dominant singular
values as follows,

Minimize γ∥Z∥∗,r + 1
2∥Z −X∥2F

s.t xi,j = x∗
i,j for (i, j) ∈ Ω

X ∈ X
, (8)

where ∥Z∥∗,r is defined as ∥Z∥∗ =
∑(2K+1)2

i=r+1 σi(Z), and

σi(·) denotes the ith greatest singular value of a matrix. This
problem is equal to the nuclear norm minimization when r = 0
and can be solved by the iterative partial matrix shrinkage
algorithm (IPMS) proposed in [9], which iterates the following
update schemes,

Step 1 Z ← Tr,λ (X) ,
Step 2 X ← PX ,Ω(Z),

(9)

where Tr,λ (X) denotes the partial soft thresholding operator
replacing the i th singular values of X with max(σi(X)−λ, 0)
for i ≥ r + 1, and PX ,Ω : R(M−2K)(N−2K)×(2K+1)2 → X
denotes the orthogonal projector defined as

PX ,Ω(Z) =
argmin ∥X − Z∥2F

s.t. X ∈ X , xi,j = x∗
i,j

. (10)

Since (8) requires the value of r regarding with a matrix rank,
the IPMS estimates a matrix rank r during iterations by using
the scheme,

r ← argmax
r̂

σr̂(X) s.t. σr̂(X) ≥ ασ1(X),

where α < 1 is a given constant. The details of the IPMS
algorithm are written in [9], and its performance is also shown
in [10] comparing with other algorithms for the matrix rank
minimization problem.

While the problem (8) with the update scheme (9) works
well and achieves high accuracy inpainting when a linear AR
model is suitable, which can be seen in Section IV, a linear
AR model (1) is not always suitable for actual images. In order
to improve the inpainting performance, this paper proposes a
low-rank and nonlinear AR model approach.

III. LOW-RANK AND NONLINEAR AR APPROACH

This section assumes that an image can be modeled by
a nonlinear AR model, where a nonlinear mapped image is
described by a linear AR model, and provides a new inpainting
algorithm based on a row-rank approach.

Let us assume that an image is modeled by the nonlinear
AR model where the intensity value xi,j satisfies

K∑
l=−K

K∑
m=−K

al,mf(xi+l,j+m) + di,j = 0, (11)

where f : R → R is a nonlinear function. If we know f , we
can apply the inpainting algorithm proposed in the previous
section after transforming each xi,j by f . This paper deals with
the case that f is unknown. We make an additional assumption
that the function f and its inverse function g := f−1 can be
approximated by polynomial as follows,

f(x) ≈
p∑

i=1

vix
i,

and

g(y) = f−1(y) ≈
p∑

i=1

wiy
i.
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Then an inpainting problrm for nonlinear AR model corre-
sponding to (8) can be described as

Minimize γ∥Z∥∗,r + 1
2∥Z − Y ∥2F

s.t Y =

p∑
i=1

viX
(i), X =

p∑
i=1

wiY
(i)

xi,j = x∗
i,j for (i, j) ∈ Ω

X ∈ X

,

where X(i) and Y (i) denote the ith element-wise power of
X and Y , respectively. In the above problem, X , Y , Z,
v = [v1 v2 . . . vp]

T and w = [w1 w2 . . . wp]
T are design

variables. Because f and g are not always described exactly by
the pth order polynomials, this paper provides the following
Lagrange relaxation,

Minimize E(X,Y, Z,v,w)
s.t xi,j = x∗

i,j for (i, j) ∈ Ω
X ∈ X

(12)

where E is defined by

E(X,Y, Z,v,w) = γ∥Z∥∗,r + 1
2∥Z − Y ∥2F

+λy∥Y −
p∑

i=1

viX
(i)∥2F

+λx∥X −
p∑

i=1

wiY
(i)∥2F ,

and λx and λy are given constants. In order to solve the prob-
lem (12), we modify the update schemes for IPMS algorithm
by adding steps to estimate v and w by the least squares
method and to update X(i) and Y (i) using their gradient
of the objective function E. Finally this paper proposes an
image inpainting algorithm as shown in Algorithm 1, where
pow(·, i) denots the ith element-wise power of a matrix, and
svd(Y ) denotes the operation of singular value decomposition.
Algorithm 1 with p = 1 is equal to the low-rank and linear
AR model approach.

IV. NUMERICAL EXAMPLES

This section presents numerical examples to show the
efficiency of the proposed algorithm. We used six test images
selected from image database (http://testimages.tecnick.com)
using MATLAB on a computer with 3.60 GHz Core i7 and
16 GB RAM. We use the parameters in Algorithm 1 as K̂ = 3,
λy = λx = 1.0, γ = 0.1, µ = 0.5, ε = 1.0 × 107, α = 1.0,
αmin = 1.0 × 103, ηα = 1.005 and tmax = 2000, which
achieve the best performance. We examine the exemplar based
image inpainting method [1] with the number of entries of each
patch is 3×3, the null space alternatingly optimization (NSAO)
based inpainting algorithm [8] with K̂ = 3 and Algorithm 1
with p = 1, 3, 5 and 7.

Figures 1 – 6 show the results of texture-like images and
Fig 7 shows the results within the proposed method by p =
1, 3, 5 and 7. In Fig 2, the exemplar method generates some
noise like cracking in edge region, the NSAO based method
misestimates with false-colors, and the proposed method with
p = 7 recovers the image better than others. Table I shows

Algorithm 1: IPMS based image inpainting algorithm
using polynomial regression
Input : X,Ω, p, λx, λy, γ, µ, αmin, ηα, tmax, ε

1 t← 0

2 Y ← X

3 repeat
4 Xold ← X

5 α← max(α/ηα, αmin)

6 X(i) ← pow(X, i) for i = 1, · · · , p
7 Y (i) ← pow(Y, i) for i = 1, · · · , p
8 [U, σ1(Y ), · · · , σ(2K̂+1)2(Y ), V ]← svd(Y )

9 r ← argmax
r̂

σr̂(Y ) s.t. σr̂(Y ) ≥ ασ1(Y )

10 Z ← Tr,γσr(Y ) (Y )

11 Y ← Y − µ∇Y E(X,Y, Z,v,w)

12 X ← PX ,Ω(X − µ∇XE(X,Y, Z,v,w))

13 v ← argmin
v
∥Y −

∑p
i=1 viX

(i)∥2F
14 w ← argmin

w
∥X −

∑p
i=1 wiY

(i)∥2F
15 t← t+ 1

16 until ∥X −Xold∥F /∥X∥F < ε or tmax < t;
Output: X

TABLE I
PERFORMANCE OF ALGORITHMS EVALUATED BY PSNR

PSNR[dB] ART 13 ART 29 ART 83
exemplar [1] 36.30 27.64 29.97
NSAO [8] 41.41 25.83 30.94
proposed (p = 1) 41.38 26.84 31.79
proposed (p = 3) 43.23 26.96 31.79
proposed (p = 5) 43.81 27.35 31.79
proposed (p = 7) 43.89 27.81 31.78

RGB 08 RGB 39 RGB 97
exemplar [1] 27.81 25.72 24.43
NSAO [8] 33.12 27.96 29.08
proposed (p = 1) 34.45 30.04 29.82
proposed (p = 3) 34.45 30.04 29.82
proposed (p = 5) 34.45 30.04 29.82
proposed (p = 7) 34.46 30.04 29.83

performance of the algorithms evaluated by PSNR. We can
see that the proposed algorithm achieves the best performance
of all algorithms.

V. CONCLUSION

This paper proposes a new image inpainting algorithm
which is based on the nonlinear AR model and estimates
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(a) (b) (c) (d) (e)

Fig. 1. Grayscale image ART 13: (a) original image, (b) inpainting area, inpainting results of (c) exemplar, (d) NSAO based algorithm and (e) the proposed
algorithm with p = 7.

(a) (b) (c) (d) (e)

Fig. 2. Grayscale image ART 29: (a) original image, (b) inpainting area, inpainting results of (c) exemplar, (d) NSAO based algorithm and (e) the proposed
algorithm with p = 7.

(a) (b) (c) (d) (e)

Fig. 3. Grayscale image ART 83: (a) original image, (b) inpainting area, inpainting results of (c) exemplar, (d) NSAO based algorithm and (e) the proposed
algorithm with p = 7.

the missing pixels with nonlinear function and the AR order
simultaneously with matrix rank minimization.

In order to model the mapping function as nonlinear, we
assumed that the function is approximated by a polynomial of
a finite degree and the dimension of latent space which the
mapped image patch belong to can be smaller than the space
of the observed patch. The proposed inpainting algorithm is
formulated as weighted nuclear norm minimization problem
to approximate the rank minimization problem with the fitting
error term. Numerical examples show that the effectiveness of
the proposed algorithm.
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(a) (b) (c) (d) (e)

Fig. 4. RGB image RGB 08: (a) original image, (b) inpainting area, inpainting results of (c) exemplar, (d) NSAO based algorithm and (e) the proposed
algorithm with p = 7.

(a) (b) (c) (d) (e)

Fig. 5. RGB image RGB 39: (a) original image, (b) inpainting area, inpainting results of (c) exemplar, (d) NSAO based algorithm and (e) the proposed
algorithm with p = 7.

(a) (b) (c) (d) (e)

Fig. 6. RGB image RGB 97: (a) original image, (b) inpainting area, inpainting results of (c) exemplar, (d) NSAO based algorithm and (e) the proposed
algorithm with p = 7.

(a) (b) (c) (d) (e)

Fig. 7. Comparison of the parameter p in Algorithm 1: (a) original image, (b) p = 1, (c) p = 3, (c) p = 5 and (d) p = 7.
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