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Abstract—We study the problem of interference mitigation
in a phased array, where a subset containing £ out of a total
of N receivers creates a virtual spatial null for an incoming
interference. The signal-of-interest and interference are repre-
sented by their corresponding steering vectors, and an optimum
subarray is chosen such that the two vectors are as orthogonal
as possible. This optimization is a binary quadratic non-convex
minimization. We propose a semidefinite programming method to
find suboptimal solutions using an optimal randomized sampling
strategy. We show that the proposed method provides solutions
as good as an exhaustive search with a cubic computational
complexity. Furthermore, the proposed algorithm outperforms
existing methods by solving the problem in a higher dimension-
ality.

Index Terms—Array thinning, antenna selection, binary
quadratic constrained programming, semidefinite programming,
convex optimization.

I. INTRODUCTION

Assuming a large phased array, a thinned array is a subset
containing some elements of the full large array that are
usually chosen to give a desirable performance. Spatial array
thinning provides three important advantages. First, in a large
phased array system with substantial hardware requirements,
a thinned array reduces the hardware cost in terms of re-
quired blocks at the front-end, such as low noise amplifiers
(LNA), phase shifters, and frequency mixers. Second, in dense
arrays where power dissipation is a matter of concern, a
well-designed thinned array can provide enough sparsity to
alleviate heating problems [1]. Third, from a signal processing
perspective, the dimensionality and the computational cost of
the system are significantly reduced by a smaller subarray.

In addition to the above advantages, array thinning can
be revisited in an interference cancellation strategy. Such a
strategy eliminates undesirable radio interference form the
origin by creating spatial nulls. Wang et al. proposed a recon-
figurable array for interference mitigation [2], [3]. Employing
spatial correlation coefficient (SCC) [4] as a cost function,
they formulated the thinning problem to make the steering
vectors of the signal and interference as orthogonal as possible.
The corresponding problem proposed in [2], is a constrained
binary quadratic non-convex optimization which is solvable
in polynomial time. The computational complexity of these
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methods, which enumerate all possible binary points within
a box or ellipsoid, is exponential in N [5]. Therefore, many
heuristic approximation methods have been proposed to locate
the solution at a lower cost. With growing dimensionality,
approximation algorithms become vital as the problem can
not be solved in reasonable time.

A first attempt at approximation can be done by relaxation
and finding lower bounds. More specifically, a simple lower
bound is achieved for binary optimization by relaxing the
binary constraint within [0, 1]. The lower bound is then ob-
tained by rounding the optimum solution to the nearest binary
value. However, the obtained solution is, in general, neither
optimal nor feasible. An effective way to relax the binary
programming problem is semidefinite programming (SDP),
which has been proven to provide the tightest bound [6], [7].
In SDP, the optimization is rearranged by introducing a rank-1
matrix variable. Dropping the rank-1 constraint, the problem
is then relaxed to one of SDP.

Although the quality of the obtained lower bound is guaran-
teed, our primary goal is to find a feasible solution. Goemans
and Williamson proved in their well-known paper that it is
possible to find acceptable values for the max-cut case using
the bounds provided by SDP [8]. They reformulated the NP-
hard max-cut problem as a Boolean non-convex quadratic min-
imization. After relaxing the problem by SDP, they proposed
a randomized sampling algorithm to find the optimal values
using a solution of the relaxed problem.

The randomized rounding algorithm proposed in [8] has
been applied in different applications, e.g. [9]-[11]. Park and
Boyd presented a randomized algorithm for finding good sub-
optimal solutions for integer convex quadratic minimization
by a probabilistic interpretation of SDP [12]. They showed
the effectiveness of their algorithm for the NP-hard integer
programming case. Nonetheless, the binary nonconvex case
has not been studied. In this paper we investigate a quadratic
minimization containing both binary and non-convex con-
straints. Similar problems such as clique, graph coloring, and
constrained max-cut in the field of graph optimizations are
challenging and command an active research profile [13], [14].

Our main contribution is reformulating the quadratic SCC
minimization problem as an SDP and proposing a new ran-
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domized rounding algorithm inspired by [12]. After reviewing
the spatial array thinning framework in Section II, two relevant
existing algorithms are studied in Sections III and IV. The
new method based on SDP is proposed in Section V and
the computational complexity of the algorithms is discussed
in Section VI. Simulation results using a rectangular phased
array are given in VII to demonstrate the effectiveness of the
proposed algorithm. Finally, some conclusions are drawn in
Section VIIIL.

II. SPATIAL ARRAY THINNING FRAMEWORK

Let matrix P be the locations of a set of N receivers in a
two dimensional plane,

1 W
T2 Y2

P=| . . (1)
TN YN

Given the normal vector pointing to a plane wave, coming
from elevation and azimuth (6; , ¢;)

w; = [sin6; cosg; sin @ sin ¢;)7, 2)

the spatial steering vector corresponding to the signal of
interest and interference are respectively

S 27 S 27
v, = eJTP“S,Vj =l XPuy, 3)
To characterize the spatial separability of the signal and inter-
ference in the assumed configuration the correlation between
the two steering vectors are measured by the spatial correlation
coefficient (SCC) [4],

viv, _ vy, _
||v.]|| ||V5|| /V?ij /VSHVS
Now we aim to find a subset containing k£ elements. That
makes the steering vectors as orthogonal as possible and
minimizes the SCC. This is an optimization problem, where

the quadratic cost function is given by the weighted norm of
a selection vector, ¢
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N2~
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Here ¢ is a vector comprising entries that are 1 or 0, with
1 indicating that the corresponding element is selected and O

that it is not. The matrix W,. is defined as

W, = real(vjsvﬁ,), (6)
and
Vis = Vs © VjT. 7

For the vector v, we use v and v7 to denote the complex
Hermitian transpose and transpose respectively. The notation
© represents Hadamard product and real(-) denotes the real
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Algorithm 1 Correlation Measurement Algorithm [2]

Set all candidate antenna selected i.e. ¢ = 1V ,
In each iteration n :
I: Let 4 :=argmax,_, Z;V:l W,
2: Delete antenna 4, i.e. ¢(i) =0,
Set the i;;, column and i, row of W,. to zero,
Putn:=n+1,
3: If n = N — K, terminate, otherwise go back to step 1.

part of a complex matrix or vector. The problem can be cast
as a binary quadratic programming [2]:

min |oy4)°
c 79

st.ci(c;—1)=0 i=1..N, (8)

and ¢’'¢ = k.

This is a non-convex problem where we are minimizing a
quadratic form over the vertices of an N-dimensional hy-
percube (¢; € {0,1}), that coincides with the surface of a
hypersphere (¢’ ¢ = k). Problem (8) can be solved in factorial
time by a simple exhaustive search. However, the solution
time increases rapidly as the dimensionality grows. Therefore,
approximation algorithms are required to find suitable subop-
timal solutions.

III. CORRELATION MEASUREMENT

Correlation measurement (CM) is a greedy approach that
decreases the number of elements iteratively [15]. The square
of the SCC, specified in (5), is actually the sum of the entries
of matrix W,. corresponding to selected elements in vector c,

T N
a2 = & ]:’;’7,c _ % S e W, ©)
ij=1
As shown in Algorithm 1, the CM method starts with a
full array and finds in each step the element that gives the
maximum total correlation. This element is then removed and
the process repeated until a set of k£ elements with the least
total correlation remains. While, correlation measurement is a
heuristic method and it is difficult to study its performance,

some performance bounds can been established [2]:
1) The CM algorithm finds the global solution if
u, —w| < 5
where d and A\ denote the inter-element spacing and
wavelength respectively.
2) When |u, —u;| is sufficiently large, the distance be-
tween the provided solution and the global minimum is

maximally 5.

IV. DCS PROGRAMMING

The non-convex binary quadratic programming specified
by (8) can be viewed from another perspective. Using the
manifold of difference of two convex sets (DCS) we can
relax the binary constraints and formulate an iterative linear
programming (LP) problem that yields an SCC lower than a
certain value [16]. Wang et al. used this property to control the
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SCC at different points and avoid the high sidelobes caused
by non-uniformly spaced elements [2]. Thus, in addition to
the original constraints, another set of constraints derived by
sampling the u-space, permits the SCC to be controlled. Let
the SCC corresponding to the original DOAs of the signal
and interference be less than some value §, and sample the u-
space interval [—1, 1] at L points with correlation vectors V;'-S
and desired SCCs ¢*, for ¢ = 1, ..., L. Then the binary vector
satisfying these constraints is found by running Algorithm 2
for a sufficient number of steps.

V. SEMIDEFINITE PROGRAMMING

The binary constraints can be relaxed by semidefinite pro-
gramming. We approach this method by finding the lower
bound and subsequently computing the solution. Introducing
a new matrix variable C € RN*N  we reformulate the
minimization problem (8) as

min

C,c

s.t.  diag(C) =c¢
T

1
ﬁTI‘(CWT)

C=cc

Tr(C) = k. (10)

The binary constraint ¢;(¢; — 1) = 0 is satisfied by requiring
that, diag(C) = ¢, and C = cc’. Also, Tr(C) = k, ensures
that the number of active elements is equal to k and makes the
non-convex constraint (¢?'¢ = k) convex. The only remaining
non-convexity arises from C = ec”. This is relaxed by a
positive semidefinite constraint, C = cc’. Using the Schur
complement, the semidefinite convex programming is recast
as,
min
C,c
s.t. diag(C) =c¢
Tr(C) = k
C ¢
> 0.

1
ﬁTr(CWT)

Y

It has been proven in [17] that the optimum value obtained by
semidefinite convex optimization, (11), gives a lower bound
for the primal problem in (8).

Algorithm 2 Controlled Quiescent Algorithm [2]
In each iteration n :

1: min 1%¢,
Cn
ol
Tt
|°",:“| <§,i=1,..,L
¢, € 0,1V
2¢f Jen—¢r jeno1 =k

2: If ||en, — €n—1]| < € terminate, otherwise
Put n:=n+1,
Go back to step 1.

ISBN 978-0-9928626-7-1 © EURASIP 2017

The reformulation provided in the set of equations (11) can
be interpreted as a nonlinear lifting to a higher dimensional
space. In fact, by introducing matrix C, we are solving the
problem in a N x N, rather than N, dimensional space. The
rank-1 constraint (C = ce”) in (10) was relaxed by a positive
definiteness constraint. If we find an optimal solution for (11)
that has rank-1 and trace k, then we would have solved the
primal problem. However, in general the optimal solutions do
not meet the relaxed constraints. Nevertheless, if the optimal
SDP solution dos not comply with the primary constraints, it
is possible to achieve a suboptimal solution by an appropriate
randomized rounding strategy [8].

Let (C*,c*) be the optimal value obtained by semidefinite
relaxation. Also, assume z € RY is a normal Gaussian
variable with distribution z ~ A (p, X). Then, the following
minimization problem optimizing the expected value of a
quadratic form

min E (];(ZTWTZ))

z
s.t. E (Zz(ZZ — 1)) =0
E (z'z) = k, (12)
is solved by z for p = ¢* and X = C — e [12]. In
short, the idea here is to solve the SDP relaxed problem (11),
obtain the optimal solution (C*,¢*) and then sample the sub-
optimal solution from z. The randomized sampling does not
immediately provide a feasible point for the original problem
(8). Hence, we need to round it to the nearest binary point
that satisfies the sum constraint (¢'¢ = k). The constrained
rounding meeting all the above criteria is another form of bi-
nary programming that is not preferred. Thus, we heuristically
design an algorithm for rounding based on optimal rounding
under integer constraints (ORIC) proposed in [18]. Given a
vector of N positive real numbers x with a total sum of M
(Zivzl x; = M), ORIC finds the closest integer vector y, by
solving the following minimization problem,

min_ [z — y||
y

N
S.t. Zyz =M.
=1

Our heuristic approach employs controlled random sam-
pling. After sampling z, we first check whether the sum of
elements is within a tolerable bound, i.e. close enough to k,
so that the following ORIC algorithm gives a vector with total
sum of k. Then, we feed the collected random vector into
ORIC and inspect the output to determine if it meets the binary
constraint. The proposed method is summarized in Algorithm
3.

VI. COMPUTATIONAL COMPLEXITY

In this section we briefly study the computational complex-
ity of the methods listed in Algorithms 1 to 3. Algorithm 1
sums the columns of W,. in each step and takes O(N?) oper-
ations subsequently. Algorithm 2 solves a linear program with
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L+ N +2 constraints in each step. Assuming that LP requires
O(n*m) operations for m constraints [17], the overall com-
putational complexity of Algorithm 2 is O(N?(L+ N +2)) or
O(N?3). Solving the SDP problem in step 1 of the Algorithm 3
using an interior point method with constant iteration requires
O(N?) operations. By employing Cholesky decomposition,
the random sampling in step 4 takes O(N?/3) once, followed
by O(N?) for each iteration. Moreover, the ORIC algorithm
used in step 6 has a complexity of O(Nlog(N)). Hence, the
computational complexity in M iterations is O(N® + M N?)
or O(N3). Noting that the relaxed problem is solved in an
augmented dimension of N x N, the complexity becomes
O(N®) compared to the primal problem.

VII. SIMULATION

In order to illustrate the performance of the algorithms
presented above, we run a simulation in this section. We
consider a rectangular array comprising 4 x 4 grid of antennas.
The elevation and azimuth angles of the signal of interest
are fixed at ¢, = 0.15m,05, = 0.257. The azimuth of the
interference, ¢;, varies from 0 to g, wheras the elevation is
fixed at §; = 0.4m. We select & = 10 antennas out of a
total 16 elements. In addition to Algorithms 1-3, we include
the results of the exhaustive search. To make the algorithms
comparable, the additional L SCC constraints are eliminated
from Algorithm 2, and ¢ is assumed to be the minimum value
obtained by exhaustive search in each DOA scenario. Also,
we limit the number of iterations to 50 for Algorithm 2, and
set the number of randomization iterations for Algorithm 3
to 1000. For each scenario, we run a Monte Carlo simulation
with 1000 trials and then calculate the mean value of |ajs|2.
As shown in Fig. 1, the exhaustive search outperforms all
other algorithms as it enumerates all possible candidates. The
SDP method (Algorithm 3) exhibits the closest performance
to the exhaustive search. The SCC squared value achieved by
the correlation measurement listed in Algorithm 1 is notably
large confirming that it finds a suboptimum solution. All three
curves coincide in the sequence centered at 0.157 (= 0.47),
which is the azimuth of the signal of interest. It is due to
the fact that in this region the signal and interference come
from directions that are very close to each other. This also
confirms the first performance bound mentioned in Section

Algorithm 3 Constrained Randomized Algorithm

1: Solve SDP relaxed problem (11) to get (C*,c*)

2: Compute the covariance matrix ¥ = C — et

3: Initialize the best point ¢™' := 0 and f°' = |a;|” (c)
In each iteration n :

4: Random sampling 2™ ~ N (p, %)

s If [N 2k

i=1 "1

=1

< 0.5 continue, otherwise go to step 4

6: Compute y=ORIC(z(™)

7: If yi € {0,1} for i =
otherwise go to step 4
8: If f(c™) < f* update " := ¢(™ and f°' :=

1,.., N then ™ = y and continue,

fe™)
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Fig. 1. Optimum SCC squared value achieved by different optimization
algorithms versus exhaustive search in different interference scenarios.
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Fig. 2. Optimum SCC squared value achieved by different optimization

algorithms versus exhaustive search for different number of antenna elements.

III. Beyond the mentioned region, the controlled quiescent
algorithm (Algorithm 2) performs better than Algorithm 1
but worse than Algorithm 3, however, its advantage lies in
its ability to control the array response in different directions.

The azimuth of the interference is then fixed at ¢; = 0.457
for the next simulation, while the algorithms are studied for
selecting different number of elements. As shown in Fig. 2,
the proposed algorithm based on SDP relaxation provides an
optimum SCC squared value that is close to the exhaustive
search. While both Algorithms 1 and 2 exhibit a worse
performance, with Algorithm 2 giving a better results that
Algorithm 1.

Let \ajs|2 be the objective function, f(c), for the selection
vector ¢, and define an approximation ratio, p as follows
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p= w (13)

Fer)

where ¢PP" and ¢°P! denote the selection vector achieved by
approximation and optimal solution obtained by exhaustive
search respectively. The maximum value, mean value, and
standard deviation of the approximation ratio achieved by
each algorithms are reported in Table I. Algorithm 1 approx-
imates the solution with the largest ratio for both simulation
scenarios. It also has a high standard deviation implying a
lack of robustness. Algorithm 3 exhibits very good reliability
and performance, closely approximating the solution. While,
Algorithm 2 occupies the middle ground between the other
two.

Finally, we make some observations regarding the perfor-
mance and computational complexity. Firstly, although Al-
gorithm 1 has the best computational complexity, it gives a
relatively large SCC value and lacks any closed form that
would enable further theoretical analysis. Secondly, Algorithm
2 is capable of controlling the array response, with a com-
plexity of O(N?3) and has a closed form solution. Thirdly,
Algorithm 3 achieves an objective value close to that returned
by the exhaustive search method, while requiring a complexity
of O(N®). Moreover, extensive literature on the theory and
analysis of Algorithm 3 exists, allowing it to be studied in
terms of approximation ratio and making it suitable to be
extended using the stochastic programming [19].

VIII. CONCLUSION

We have proposed semidefinite programming, followed by
an optimal randomized sampling, for radio interference mit-
igation. Our approach exploits the probabilistic features of
SDP to solve, as non-convex, the problem of interference
cancellation by array thinning. Employing an optimal rounding
method, we proposed a heuristic randomization comprising
binary and box constraints. Finally, we provided simulation
results confirming the effectiveness of the proposed algorithm
compared to exhaustive search as well as its superiority in
terms of approximation ratio compared to algorithms that solve
the problem in a lower dimensional space.

TABLE 1
COMPUTATIONAL COMPLEXITY, MAXIMUM, MEAN AND STANDARD
DEVIATION OF THE APPROXIMATION RATIO FOR DIFFERENT ALGORITHMS
AND SIMULATION SCENARIOS.

p, sim #1 p, sim #2

max mean std max mean std

1600
733
4.41

241
126
1.46

528 2800 325 718
263 107 21 31
1.06 7 1.65 1.51
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