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Abstract—Classification of EEG signal involved in a particular
cognitive activity has found many application in brain-computer
interface (BCI). In specific, use of classification algorithms to
highly multivariate non-stationary recordings like EEG is a
challenging and promising task. This study investigated two sub-
stantial novelty of the topics, (1) Distinction between meditation
(Kriya Yoga) and non-meditation state allied EEG, (2) Char-
acterization of the underlying mechanism of cognitive process
that is associated with meditation using topographical analysis.
The topographic wavelet coherence based brain connectivity
between two different groups is shown. Two groups of data,
one with 23 meditators (meditator group) and other with ten
non-meditators (controlled group) are analyzed. The spatial
distribution between two groups can be well distinguished by the
topographical approach. The quantification has been done by the
colour intensity embedded in the topographical plots. The wavelet
coherence is found to be a different parameter to represent
the distinctiveness between two groups. The time-frequency
quantification regarding wavelet coherence spectrum is shown
the unique patterns among meditators and non-meditators. Thus
time-frequency based wavelet coherence has found to be an
unusual brain pattern in the distinction between meditators and
non-meditators.

I. INTRODUCTION

Amongst different neuroimaging methods, Electroen-
cephalographic (EEG) and Magneto-encephalographic (MEG)
signals are preferred to capture the direct reflection of neural
firing in the brain, exhibiting a high temporal resolution (in
milliseconds) despite a low spatial resolution (of the order
of a few square centimetres) [1]. The brain activity can be
captured in many ways, among them, EEG is the non-invasive
way of acquiring the brain signal. Any cognitive activity is
being reflected in distinctive brain waves [2]. Among different
cognitive activity, meditation is raised as a fascinating topic
among the different study of neurophysiological behavior, cog-
nition, and consciousness. The meditation and their benefits
have grabbed the attention of ‘society of human neuroscience’
because of many advantages to reducing stress related illness
of today’s fast living life style [3], [4]. Unlike meditation, any
cognitive activities have their explicit indication in the human
brain over EEG [2].
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The challenging problem in brain connectomic studies is the
classification of brain connectivity coming from more or less
similar cognitive activity [5]. However, it’s relatively difficult
task to interpret the EEG waves by only looking at its dynam-
icity [6]. To visualize the inherent neural dynamics during
meditation and resting brain state, both time and frequency
behavior have considered in this study. We have depicted
wavelet coherence connectivity study represented in cutting-
edge topographical patterns [7]. The topographic approach
has taken into consideration as a case study scheme in the
distinction of meditation and non-meditation state-aided with
EEG.

The topographical EEG analysis is the representation of
the Spatio-temporal distribution of magnitude of the corre-
sponding parameter. It has specified for three reasons: (1)
ease of visual interpretation in the spatial domain, (2) ROI
based inspection and (3) conformity inference using color bar
representation throughout [8]. The functional brain connectiv-
ity cortico-cortical interactions can easily be interpreted by
the topography. The brain topography is the descriptive anal-
ysis of characterizing the interrelationships of cortical areas
concerning the functional connectivity. In brain connectivity
study, fallacies often originate due to the cross talk between
EEG channels and sensor space, termed as volume conduction
effect [9]. It is the effects of recording electrical potential at
a distance from their source generator. Since the recording
electrodes are not in direct contact with the muscles or nerve,
there is a medium which separates the two. In Practice, volume
conduction found in almost all neurophysiological recordings.

In the existing literature, there are various classification
techniques present to classify the EEG patterns into two
or more than two groups involved in a different cognitive
activity (In our case is two groups (meditators and non-
meditators)). Most of the classification algorithms work on
the brain features. Sometimes it’s hard to extract features
from the EEG signals because of its large data dimensionality,
nonlinearity, and non-stationarity. In multichannel EEG, the
coherence between channels also can be featured. Assuming
this, the wavelet coherence which preserves the time-frequency
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information between the two or more time series has been con-
sidered. A few literature has addressed the use of topographical
approach for neurophysiological classification problems. In
[10], the connectivity through spectral coherence is utilized for
the biometric signature for the automatic people recognition
[11]. It has discussed, instead of extracting different temporal
features from the EEG signal, the coupling of different brain
regions also possess some unique signature pattern within
itself. Some of the literature also presented the use of wavelet
coherence estimation in the Chinese Stroop task [12] study.
One more work has debated the coupling between neural
signal using wavelet-based coherence estimation in [13]. The
use of the topographical distinction between meditators and
non-meditator groups and their classification using wavelet-
based coherence has very rarely discussed.

The remaining section of the paper is organized as follows.
Section II presents the methodological details of the data
acquisition and preprocessing techniques. It also discusses the
mathematical detailing of the concept of the wavelet coherence
connectivity and their utility in the functional brain neural path
estimation. Eventually, Section III shows the results in terms
of topographical presentation and non-parametric comparison
between meditators and non-meditators in average subjects.
Section IV mentions the significance of the obtained results
in the discussion section and finally, the paper concludes in
Section V.

II. METHODS
A. Experimentation, Proposed framework and ROI Selection

The present study directly follows from the EEG experi-
ments and the preprocessing techniques published in [14], [15]
based on the same study protocol and method. For the sake of
completeness, a short description of the experimentation and
data collection is described below. Fig. 1 illustrates the overall
framework for the wavelet-based coherence connectivity anal-
ysis in EEG data and their common interpretation concerns
with meditative state and non-meditative state associated EEG.
The selection of ROI is depicted considering the symmetry
position of the electrodes and indicating the major brain lobes.
The major brain lobes are shown in Fig.2 and the selected EEG
electrodes are Fpl, Fp2, F3, F4, Fz, F7, F8, C3, C4, Cz, T7,
T8, P3, P4, Pz, P7, P8, Ol, and O2.
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Fig. 1. Pipeline of the proposed approach for the distinction between
meditators and non-meditators

B. EEG Recordings and Data Preprocessing

The EEG data were collected from 23 meditators and ten
non-meditators (control group). The EEG data have been
collected from 64 channels RMS Victa EEG machine, at a
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Fig. 2. Different brain lobes and selected 19 channels considered for wavelet
coherence estimation

sampling rate of 256Hz and 16-bit resolution. The data has
been acquired for the duration of approximately 9 minutes
data. However, nearly 4.17mins data has been used for the
wavelet-based coherence study. Furthermore, the raw data has
to be preprocessed for further wavelet based coherence analy-
sis to remove unwanted noises and artifact. The pre-processing
steps directly follow the steps mentioned in [14], [15]. The
study protocol follows the same preprocessing techniques for
the further analysis.

C. Wavelet coherence (WC)

To some extent, the problem due to non-stationarity has
been overcome by wavelet analysis. Since the wavelet analysis
preserves both time and frequency information, it measures
the functional interrelations between the pair of signals. In
this case, it is obtained from neuro-cortical regions of two
or more EEG electrodes [5], [13]. In contrast to Fourier
analysis, wavelet analysis has been developed to analyze
signals with rapidly changing spectra [16]. It estimates the
spectral characteristics of the signal as a function of time.
Furthermore, the wavelet coherence is mostly used to detect
common time-localized oscillation in non-stationary signals
such as EEG. In the situation where EEG recordings were
captured during meditation.

In some sense, the wavelet coherence that has the same form
as the Fourier-based coherence function, namely the ratio of
the cross spectrum to the product of the auto-spectrum of two
signals x and y [17]. The mathematical details of the measure
of wavelet coherence are mentioned below:-

Let x and y represent the two EEG time series from the same
ROI. The strictly causal multivariate autoregressive model
(MVAR) that fit the data is of the form

x(n) = i A(k)x(n—k)+ i B(k)y(n—k)+u*(n)

k:l k;l )
y(n) = Z A(k)y(n—k)+ Z B(k)x(n—k)+u (n)

k=1 k=1

where A(k) and B(k) are the model co-efficient matrices,
p is the optimal model order chosen by Schwarz Bayesian
Criterion (SBC) [18], [19], n is the time index and k is the
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lag. MVAR model parameter are estimated by the Kalman
filter [20]. In addition, u*(n) and u”(n) are the additive white
Gaussian noises’ at a time n for the time series x and y
respectively. The wavelet transform of the considered time
series x is

N _ -
W*(n,a) = \/f Z ¥ (n’fn)(g)

n'=1 L J

similarly for the time series y is

At X ey
Wy(n,a) = ; Z ynlp() (I’l 7”)(

n'=1 L g

where n is the time index and a the wavelet scale. N is the
length of the corresponding time series x and y with sampled
at equal time step size of Ar. The function ¥, is selected to
be the complex Morlet wavelet and expressed as

L -2
W, () = 7 deone T

and the cross wavelet transform can be defined for two
timeseries as

2

The mathematical expression of the wavelet coherence is
written as

WY (n,a) = W¥(n,a)W>*(n,a)

- ‘ny(n,a)|2
(C(n,a))* = W (n,a)W> (n,q)

However, the major difference between Fourier and wavelet
analysis are the selection of the window size. In the case
of Fourier, the window size is fixed, whereas in wavelet
it is adapted to the frequency of the signal. That is the
reason; the wavelet transform has more precise time-frequency
resolution than Fourier analysis. Many other tools are existing
for time-frequency analysis and can be convenient to neuro-
physiologic signals. Nevertheless, the wavelet analysis offers
both time-varying power spectrum and phase spectrum, which
are desirable to compute coherence. Because of this, wavelet
studies an obvious choice for the estimation of coherence
amongst nonstationary signals. The wavelet-based estimation
of coherence, or wavelet coherence, is a very recent tool. To
our knowledge, it is only (briefly) mentioned in the papers
cited above [5], [21], [22] which do not provide information
crucial for its application to brain connectivity and their
distinction.

Coherence can be defined as the frequency domain repre-
sentation of correlation. The time-frequency precision trade
off mostly recommended for the non-stationary signal such as
EEG. Hence, the WC is mostly famous for measuring the
synchrony in two timeseries data [23]. However, the EEG
signal obtained from the human brain mostly 3D surface.
Thus the impact and interact between two series are also
affected by the presence of the third time series. The wavelet-
based coherence can be used to interpret the brain connectivity
in different cognitive activity is described in the following
subsection.

3)
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D. Brain connectivity estimation using wavelet coherence
(WC)

Wavelet coherence is rarely used to investigate the cortical
distinctiveness among different brain region involved in a
cognitive task. The average value at a different frequency band
of the wavelet coherence has been calculated based on the
different ROI indicating distinct brain lobes. These average
values are decomposed into brain spectra using DWT, and
the WC of two signals can be calculated by using (3) yields
a connectivity between the pair of electrodes or more than
two electrodes. The WC based connectivity estimation is the
quite advanced topic to be addressed. It is the time-frequency-
space by successively convolving the time series with scaled
and translated versions of a wavelet function. This wavelet-
based coherence measurement is deliberately significant in the
contribution of the functional brain connectivity and, using
specifications that anticipate the brain activity involved in a
particular cognitive action [24].

III. RESULTS

A. Measuring Responses using Non-parametric Pairwise Co-
herence

The results obtained from the wavelet coherence (WC) has
more or less distinctive however for the confirmatory test, we
have opted for statistical distribution technique. The obtained
results along with the error bar are shown in Fig. 3 and 4 for
one of the meditator and non-meditator respectively.
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Fig. 3. Each box plot illustrates distribution percentiles of magnitude squared
coherence between the channels pair mentioned. The bottom and top lines in
each box depicts the 1st and 3rd quartiles of the distribution; the band inside
the box is the 2nd quartile. Wavelet Coherence in the selected ROI of EEG
time series acquired during meditation of one of the meditator.
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Fig. 4. Each box plot illustrates distribution percentiles of magnitude squared
coherence between the channels pair mentioned. The bottom and top lines in
each box depicts the 1st and 3rd quartiles of the distribution; the band inside
the box is the 2nd quartile. Wavelet Coherence in the selected ROI of EEG
time series acquired during resting state of one of the non-meditator.

The coherence connectivity is more inferable in the time-
frequency domain than time or frequency domain alone. The
primary constraint in EEG connectivity analysis is the detec-
tion of an actual connection between different brain regions
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TABLE I
ROI BASED WAVELET COHERENCE ESTIMATION IN MEDITATORS AND

0.1
NON-MEDITATORS SUBJECTS AND THEIR RESPECTIVE BRAIN WAVE.
Selection of ROI and 0.05
channels based on Name of
X the selected Meditators Non-meditators
different 0
. channels as ROI
brain lobes
1. Prefrontal Fpl , Fp2 Alpha band Beta band
2. Frontal F3,Fz, F4,F7,F8 Delta band Alpha band
3. Central C3, Cz,C4 Theta band Alpha band
4. Parietal P3,Pz,P4,P7,P8 Alpha band Beta band ol
5. Occipital 01,02 Delta band Theta band '
6. Left and T7,T8 Theta band Beta band 0.05

Right temporal

and their inference out of the brain connectivity in a particular
cognitive action such as meditation. The neural connectivity
depends on the cause and effect of the neighbouring and
nearby neurons. Here, in this paper, the connectivity estimation
has been established in terms of EEG scalp electrodes. For
the spatiotemporal analysis of the multichannel EEG, can
be more visualized with respect to ROI based topographical
representation.

B. Topographical analysis and inferences based on WC con-
nectivity

The significance of this investigation was the evaluation
of adopting EEG functional connectivity for the purpose of
short term Kriya meditation. The topographical representation
of magnitude of the wavelet coherence of one of ROI has
been shown in Fig. 5 and 6 respectively. The average wavelet
coherence and their corresponding wave bands are mentioned

in Table I.

Fig. 5. Wavelet Coherence in the selected ROIs of EEG time series acquired
during brain resting state of one of the non-meditator.

IV. DISCUSSION

The WC was measured to observe functional connectivity
in the brains of meditators and non-meditators. Moreover, the
low frequency bands are affected by volume conduction which
misleads to wrong interpretation of connectivity. WC results
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Fig. 6. Wavelet Coherence in the selected ROIs of EEG time series acquired
during meditation of one of the meditator.

corresponds to delta (§) and theta (8) band can be discarded to
avoid volume conduction. The decreased coherence represents
the reduced functional connectivity between brain regions. It
was observed faded WC in controlled group whereas increased
WC was observed in meditator group in most channel pairs
at most frequency bands. In specific, in meditator, increased
WC was significantly observed in the pre-frontal region alpha
(o) band (Table I). In the non-meditator or controlled group
increased WC was primarily observed in the temporal-occipital
links in the theta (8) and beta bands (f3).

The human brains typically exhibit distinct dynamic be-
haviour at multiple spatial and temporal scale. Thus med-
itation EEG also has a distinct pattern in meditators and
non-meditators. The topographical representation shows the
synchronized oscillation among the EEG time series. The
combination of WC and topographical approach are very rare
study in the application of EEG involve in a cognitive task
of short term meditation. The wavelet coherence shows the
information about both time and frequency in EEG time series.
The coherence study involves only two timeseries. If the study
involves more than two timeseries then Granger causality and
multivariate time-series analysis comes into picture.

V. CONCLUSION

In this conclusion, a unique distinction technique has been
shown to classify two groups of subjects involved in the
cognitive activity of meditation and resting state. Our approach
has been proposed and analysed a novel way to categorize two
groups i.e. meditators and non-meditators. Simultaneously it
has also shown the time-varying connectivity between different
brain regions. WC enabled us to examine the information flow
during processing the cognitive task of meditation and resting
state. Furthermore, the findings obtained from the proposed
approach appears promising for their distinctive results using
topographical results. The application to experimental data
shows that the wavelet coherence offers different means of
interdependence between brain signals as far as the detection
of short-term coherence is concerned. The fact that these
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topographies did not occur in the control group strongly
indicates that they are real features and with no artifacts.
The different regions of the brain have the distinguishable
degree of synchrony and information exchange patterns during
meditation and resting brain state. The wavelet coherence can
be considered as one of the unique features in the creation of
the feature matrix for classification algorithms and can also
be compared with other general linear model (GLM) based
connectivity estimation which is deliberated as the extension
of this work for future analysis.
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