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Abstract—Common well-known properties of time series of
financial asset values include volatility clustering and asymmetric
volatility phenomenon. Hidden Markov models (HMMs) have
been proposed for modeling these characteristics, however, due
to their simplicity, HMMs may lack two important features.
We identify these features and propose modeling financial time
series by recent Pairwise Markov models (PMMs) with a finite
discrete state space. PMMs are extended versions of HMMs and
allow a more flexible modeling. A real-world application example
demonstrates substantial gains of PMMs compared to the HMMs.

Index Terms—Hidden Markov models, Forecasting, Financial
time series, Pairwise Markov models, Technical analysis.

I. INTRODUCTION

Stock market prediction remains a significant challenge of

modern risk management theory and practice. Universally ac-

knowledged features of financial time series include volatility

clustering, autocorrelation in returns and asymmetric volatility

phenomenon (AVP). A well-established methodology consists

in using a mathematical model to describe available data and to

project it into the future. The autoregressive integrated moving

average (ARIMA) and generalized autoregressive conditional

heteroscedasticity (GARCH) models are popular among prac-

titioners. These models are reviewed in [1]. The GARCH

model describes the volatility clustering in the data and some

of its variants describe the AVP as well, while the ARIMA

model describes autocorrelation in returns. Alternative tech-

niques include artificial neural networks [2], fuzzy logic [3],

support vector machines classifiers [4] and their combinations.

In recent years, there was an increasing interest in the

regime-switching models, reviewed e.g. in [5]. In financial

markets, these models allow identifying bull and bear al-

ternating regimes. A bull state is characterized by positive

expectation of log-returns and low volatility, while a bear state

is driven by negative expected log-returns and high volatility.

The hidden Markov models (HMMs) provide a suitable frame-

work for modeling regime-switching. An important example

of such framework is available in e.g. [6]. These models use

a hidden sequence of the same length as the sequence of

observed log-returns. The HMMs are known to be robust and

straightforward to implement. However, the HMMs do not

take the following potential features of stock dynamics into

account:

• (F1): log-returns may be correlated conditional on the

state variables;

• (F2): the future state and current log-return may not be

independent conditional on the current state.

The Pairwise Markov models (PMMs) are introduced and

studied in [7] as a general statistical concept. Particularly, they

are able to include both features (F1) and (F2) in the HMMs

for the same processing cost.

The purpose of the paper is to introduce a modeling of finan-

cial time series with the PMMs. Specifically, we investigate if

the PMMs can allow improving forecasting performance and

if both features (F1) and (F2) should be taken into account.

Throughout this paper, we assume that the state space is finite

discrete in both HMMs and PMMs.

The paper is organized as follows. In Section II we recall the

Hidden and Pairwise Markov models. Section III is devoted

to modeling stock dynamics with the PMMs and to related

estimation methods. Section IV contains experiments on real-

world data and Section V is a discussion of the results.

Section VI concludes the paper and presents perspectives for

further researches.

II. MODELS

Let N > 0, (Y1,Y2, ...,YN ) = Y1..N be a time series

and Ω be a finite discrete set. The idea is to describe the

probability distribution of Y1..N by using a hidden time series

R1..N , where for each n in {1, .., N}, Rn ∈ Ω. Specifically,

one defines the probability distribution p (r1..N , y1..N ) of the

pair (R1..N ,Y1..N ). In this case, we have

p (y1..N ) =
∑

r1..N∈ΩN

p (r1..N , y1..N ) .

Both HMMs and PMMs are used to define p (r1..N , y1..N ).
In this section we recall the definition and statistical properties

of these models.

A. Hidden Markov Models

Definition 1. A probability distribution p (r1..N , y1..N ) is a
Hidden Markov model of Y1..N if it verifies

p (r1..N , y1..N ) = p (r1)

N−1∏
n=1

p (rn+1 |rn )
N∏

n=1

p (yn |rn ) .

Any HMM has the following properties:

• (P1): R1..N is a Markov chain;
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• (P2): (Y1,Y2, ...,YN ) are independent conditional on

R1..N ;

• (P3): For each n in {1, .., N}, p (yn |r1..N ) = p (yn |rn ).
In practice, one specifies the family of distributions to which

p (yn |rn ) belongs to.

B. Pairwise Markov Models

Definition 2. A probability distribution p (r1..N , y1..N ) is a
Pairwise Markov model of Y1..N if (R1..N ,Y1..N ) is a Markov
chain, i.e.

p (r1..N , y1..N ) = p (r1, y1)

N−1∏
n=1

p (rn+1, yn+1 |rn, yn ) .

Figure 1 presents directed dependency graphs of HMM

and PMM. Consider the following decomposition of

p (rn+1, yn+1 |rn, yn ), for n in {1, .., N − 1}:

p (rn+1, yn+1 |rn, yn ) = p (rn+1 |rn, yn ) p (yn+1 |rn, rn+1, yn ) .

Y4 Y1 Y2 Y3 

R4 R1 R3 R2 R4R3

Y4 Y4Y1 Y2 Y3 

R4 R1 R3 R2 RR4RR33

(a) (b) 

Fig. 1: Directed dependency graphs of HMM (a) and PMM

(b).

From the above equation, we see that a PMM is an HMM

if, and only if, for each n in {1, .., N − 1} :

p (yn+1 |rn, rn+1, yn ) = p (yn+1 |rn+1 ) ; (1a)

p (rn+1 |rn, yn ) = p (rn+1 |rn ) . (1b)

We also consider two subclasses of PMMs where only one

of constraints (1a)-(1b) is relaxed.

Definition 3. PMM (R1..N ,Y1..N ) is called PMM-F1 (PMM-
F2) if it verifies, for each n in {1, .., N−1}, eq. (1b) (eq. (1a)),
respectively.

Figure 2 presents directed dependency graphs of PMM-

F1 and PMM-F2. In practice, one should specify the fami-

lies of distributions to which p (yn |rn ), p (rn+1 |rn, yn ) and

p (yn+1 |rn, rn+1, yn ) belong to.

III. METHODS

In this section, we introduce a Pairwise Markov modeling

of asset log-returns. Specifically, we explain how the PMMs

allow modeling features (F1) and (F2) mentioned in Section I.

We also outline various types of PMM data processing, such

as the state estimation, forecasting and parameter inference.

Y4 Y1 Y2 Y3 

R4 R1 R3 R2 RR4RR33

(b) 

Y4 Y4Y1 Y2 Y3 

R4 R1 R3 R2 R4R33

(a) 

Fig. 2: Directed dependency graphs of PMM-F1 (a) and PMM-

F2 (b).

A. Modeling financial time series

Let Sn be the stock price at time n, n ∈ N. The log-return

Yn at time n > 0 is defined by

Yn = log(Sn)− log(Sn−1). (2)

In the classic Black-Scholes model, the log-returns Y1..N

are assumed to be normally distributed and to have the same

mean μ and standard deviation σ. In other words, we have,

for each n > 0,

Yn = μ+ σUn,

where {Un}n>0 are zero-mean, unit-variance independent

Gaussian random variables, also known as the standard Gaus-

sian white noise. μ and σ are known as the average return (or

drift) and the volatility of the stock.

The HMM allows extending the classic Black-Scholes

model by making μ and σ dependent on hidden variables.

Let R1..N be a Markov chain, then let

Yn = μ(rn) + σ(rn)Un, (3)

with {Un}1≤n≤N standard Gaussian white noise variables.

The parameters of this model include the initial state distri-

bution p (r1 = i) for each i ∈ Ω, Markov chain transition

matrix p (rn+1 = j |rn = i ) for each i, j ∈ Ω and the values of

the drift and volatility per state {μ(i), σ(i)}i∈Ω. For example,

if ω1 is associated with the bear market state and ω2 with

the bull state, one would expect μ(ω1) < 0 < μ(ω2) and

σ(ω1) > σ(ω2). The Hidden Markov modeling of Y1..N is

given by (P1)-(P3) and

∀n, 1 ≤ n ≤ N, p (yn |rn ) = N
(
μ(rn), σ(rn)

2
)
, (4)

where N(., .) denotes the normal probability distribution with

specified mean and variance.

The PMMs provide a more flexible framework than that

of HMMs. In order to fulfill the requirement (F1) presented

in Section I, we define a first-order autoregressive model of

Y1..N conditional on R1..N . We set

Un+1 = ρ(Rn,Rn+1)Un +
√

1− ρ(Rn,Rn+1)2Vn+1, (5)

where n > 0, U1, {Vn}n>0 are standard Gaussian white noise

variables and for each i, j ∈ Ω, |ρ(i, j)| < 1.

As regards the feature (F2), we make Rn+1 dependent on

Yn conditional on Rn by using the concept of the logistic
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function. Specifically, in the case where Ω has only two

elements {ω1, ω2}, we set

p (rn+1 = ω1 |rn, un ) = 1

1 + e−a(rn)−b(rn)un
, (6)

where for each i ∈ Ω, a(i) ∈ R, b(i) ∈ R.

Finally, we combine (3), (5) and (6) to define a pairwise

Markov modeling of Y1..N :

p (y1 |r1 ) = N
(
μ(r1), σ

2(r1)
)
; (7a)

p (rn+1 = ω1 |rn, yn ) = 1

1 + e−a(rn)− b(rn)
σ(rn)

(yn−μ(rn))
; (7b)

p (yn+1 |rn, rn+1, yn ) =

N
(
μ(rn+1) +

ρ(rn, rn+1)σ(rn+1)

σ(rn)
(yn − μ(rn)) ,

σ(rn+1)
2(1− ρ(rn, rn+1)

2)
)
. (7c)

The parameters of this model are

θ = {π(i), μ(i), σ(i), a(i), b(i), ρ(i, j)}i,j∈{ω1,ω2}, (8)

where π(i) = p (rn = i). This model is presented for Ω =
{ω1, ω2}, but one can consider a more general definition by

using the multinomial logistic function, as explained in [8].

B. State estimation and forecasting

Real-time processing of incoming data {Yn}n>0 in a PMM

involves determining p (rn |y1..n ), known as the filtering dis-

tribution. Algorithm 1, derived in [7], allows computing the

filtering distribution with a complexity linear in n.

Algorithm 1. Filtering in PMMs
• Consider, ∀n > 0, rn ∈ Ω, αn(rn) = p (rn, y1..n);
• Initialization: ∀r1 ∈ Ω, α1(r1) = p (y1 |r1 ) p (r1);
• Recursion:

Given {αn(rn)}rn∈Ω and yn+1, compute, ∀rn+1 ∈ Ω,

αn+1(rn+1) =
∑
rn

αn(rn)p (rn+1, yn+1 |rn, yn ) .

The filtering distribution is given by

p (rn |y1..n ) = αn(rn)∑
rn∈Ω

αn(rn)
.

Forecasting consists in computing p (yn+1..n+p |y1..n ) for

p > 0. An important case of forecasting is the one-step-ahead

forecasting, for which p = 1. In this case, it is also particularly

important to forecast Zn+1, where

Zn+1 =

{
1 if Yn+1 < 0;
2 otherwise.

(9)

Zn+1 represents the direction of the stock price change

during the day n + 1. The anticipated price change at n + 1
given the information available at n is defined by

ẑn+1|n =

{
1 if p (yn+1 < 0 |y1..n ) > 0.5;
2 otherwise.

(10)

Algorithm 2. One-step-ahead forecasting in PMMs
Let n > 0,
• Compute p (rn |y1..n ) by using Algorithm 1;
• Compute p (rn, rn+1 |y1..n ):

p (rn, rn+1 |y1..n ) = p (rn |y1..n ) p (rn+1 |rn, yn ) ;
• Compute, for each rn, rn+1 in Ω, m̂n+1(rn, rn+1) and
ŝ2n+1(rn, rn+1) by respectively

μ(rn+1) +
ρ(rn, rn+1)σ(rn+1)

σ(rn)
(yn − μ(rn))

and (1− ρ(rn, rn+1)
2)σ2(rn+1);

• The predictive distribution p (yn+1 |y1..n ) is a mixture of
normal densities N

(
m̂n+1(rn, rn+1), ŝ2n+1(rn, rn+1)

)
with weights p (rn, rn+1 |y1..n ). Compute the one-step-
ahead forecast

ŷn+1|n
def
== E [Yn+1 |y1..n ]

as the mean of the mixture, that is

ŷn+1|n =
∑

rn,rn+1∈Ω

p (rn, rn+1 |y1..n ) m̂n+1(rn, rn+1);

(11)

• Let Φ denote the normal cumulative distribution function,
compute p (yn+1 < 0 |y1..n ) by∑
rn,rn+1∈Ω

p (rn, rn+1 |y1..n )× Φ

(
−m̂n+1(rn, rn+1)

ŝn+1(rn, rn+1)

)
;

Contrary to the one-step-ahead forecasting, there is no

apparent closed-form expression for p (yn+1..n+p |y1..n ) in the

case of multistep forecasting in PMMs.

C. Parameter estimation

Let N > 0, Y1..N be an observed time series of log-returns.

The goal of a PMM parameter estimation is to infer the

parameter vector θ (8) from the observed data Y1..N .

The Expectation-Maximization (EM) and the Iterative Con-

ditional Estimation (ICE) are well-known parameter estimation

algorithms and are similar to the maximum likelihood estima-

tion. These algorithms are well suited for both HMMs and

PMMs, and the details may be found in [9].

Alternatively, θ can be estimated by using the princi-

ple of empirical risk minimization (ERM). Several methods

for proving consistency of such estimators are provided in

e.g. [10]. Let us recall the general idea of the ERM. Assume a

training set (x1..N , y1..N ) in (X×Y)N , a prediction function

h : X → Y and a loss function L : Y × Y → R+. The

empirical risk associated with the prediction function h is

defined as

R̂(h) =
1

N

N∑
n=1

L(h(xn), yn).

Thus, the idea of the ERM is to find a function h for which

the risk is minimal.

Regarding the context of forecasting, we have xn = y1..n
and h(xn) = ŷθn+1|n(y1..n), where ŷθn+1|n(y1..n) is computed
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from θ and y1..n by (11). We consider the following loss

functions:

L1(ŷ
θ
n+1|n(y1..n), yn+1) = |ŷθn+1|n(y1..n)− yn+1|,

L2(ŷ
θ
n+1|n(y1..n), yn+1) = (ŷθn+1|n(y1..n)− yn+1)

2.

The associated risk functions are

R̂1(θ) =
1

N − 1

N−1∑
n=1

|ŷθn+1|n(y1..n)− yn+1|, (13a)

R̂2(θ) =
1

N − 1

N−1∑
n=1

(ŷθn+1|n(y1..n)− yn+1)
2. (13b)

Let λ > 0, the following risk function realizes a trade-off

between R̂1(θ) and R̂2(θ):

R̂(θ;λ) = λR̂1(θ) + R̂2(θ). (14)

In our study, we estimate θ by minimizing (14) for various

values of λ. There is no closed expression known for the

corresponding update equations and we solve the optimization

problem by the particle swarm optimization (PSO). PSO

methods [11] are non-convex global optimization algorithms.

IV. EXPERIMENTS

Let us present our methodology to compare the efficiency

of PMM with that of HMM on historical stock quotes. Given

a data set H = {y1, .., yM} with successive daily log-returns

of an asset E, we split H into two juxtaposed sets as follows:

Htraining = {y1, .., yN} and Htest = {yN+1, .., yM}. The first

set is used to estimate the parameter θ by minimizing (14)

for a given λ, while the second set serves only to assess the

efficiency of each model considered. The models are compared

in terms of the outcome produced by the following trading

system. At the beginning of each day n+1, N ≤ n < M , the

system buys asset E only if the one-day-ahead forecast (10)

produced by the model is positive, i.e. if ẑn+1|n = 2, and

sells the asset at the end of the day. In the case of a negative

forecast, the system avoids any trading operations on E. Next,

we compute the absolute return of the system on Htest and

compare it with that of the asset. Let us recall that the absolute

return of E relative to date N is defined as

τ(n;N) =
Sn − SN

SN
, (15)

for n ≥ N . Equivalently, τ(n;N) can be written as a function

of the log-returns:

τ(n;N) = exp

(
n∑

t=N+1

yt

)
− 1.

Thus, the absolute return of the trading system considered can

be written as

τ∗(n;N) = exp

(
n−1∑
t=N

yt+1δ(ẑt+1|t = 2)

)
− 1. (16)

We apply this methodology to Cliffs Natural Resources

Stock prices (NYSE:CLF). Stock quotes are taken from the

Yahoo! database and correspond to the business days from

01/02/1990 to 12/13/1993 for Htraining and from 12/14/1993 to

09/29/1994 for Htest. In this configuration, the size of Htraining

is N = 1000, the size of Htest is 200 and the total size of the

data set H is M = 1200. In every experiment, the state space

consists of only two elements. Figures 3 and 4 display the

values of risks R̂1(θ) and R̂2(θ) cf. (13) for θ minimizing (14),

in function of λ. Absolute returns generated by four models on

the test set are given in Table I for various values of λ. Figure 5

displays the returns produced per each model in function of

time with λ = 0.

λ = 10−3 λ = 10−2 λ = 1 λ = 102 λ = 103

HMM 17% 13% 10% 10% 10%

PMM-F1 16% 14% 11% 9% 9%

PMM-F2 21% 20% 19% 14% 16%

PMM 21% 20% 19% 14% 16%

TABLE I: Absolute returns (16) of HMM, PMM-F1, PMM-

F2 and PMM-based trading systems on NYSE:CLF historical

prices. The returns are related to the period from 12/14/1993

to 09/29/1994.

-15 -10 -5 0 5 10 15
6.64

6.66

6.68

6.7

6.72

6.74 10-3

HMM
PMM-F1
PMM-F2
PMM

Fig. 3: Values R̂∗
1(λ) = R̂1(θ) in function of λ, where θ

minimizes (14).

-15 -10 -5 0 5 10 15
8.9

9

9.1

9.2

9.3 10-5

HMM
PMM-F1
PMM-F2
PMM

Fig. 4: Values R̂∗
2(λ) = R̂2(θ) in function of λ, where θ

minimizes (14).

Let us make several brief observations.

Figures 3 and 4 are consistent with the definition of θ as

the minimum of (14). When λ increases, R̂∗
1(λ) = R̂1(θ)
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10/01/93 01/01/94 04/01/94 07/01/94 10/01/94
 0%

 5%

10%

15%

20%

25%
PMM-F2
PMM
PMM-F1
HMM
Asset

Fig. 5: Absolute returns (16) from 12/14/1993 generated by

PMM-based trading systems on NYSE:CLF historical data.

PMM models are estimated on the data from 01/02/1990 to

12/13/1993 by minimizing (14) with λ = 0. Four charts (from

top to bottom) relate to the four models. The last chart is the

absolute return of the asset (15).

decreases and R̂∗
2(λ) = R̂2(θ) increases, and vice versa, and

this holds for the four models.

Progressive inclusion of features (F1) and (F2) in the HMM

improves both risk values computed on Htraining, as expected,

independently of the value of λ.

We can see from Figure 5, that PMM-F1 implies a more

risk-adverse trading strategy than that of HMM, and the related

generated return increases almost monotonically. However,

PMM-F1 may not be well suited for a bull market. PMM-F2

and HMM appear to be better suited for bull dynamics, while

PMM-F2 seems to be less vulnerable than HMM to abrupt

drops of asset value.

V. DISCUSSION

We proposed a meaningful parameterization of PMM for

modeling financial time series. The results show that both

features (F1) and (F2), mentioned in Section I, can be captured

by PMMs, which was expected. One can intuitively understand

why using the feature (F1) should improve forecasting, while

(F2) is more difficult to interpret. Suppose for example that

during the bull state, the return Yn appears to be excessively

negative compared to the average return of the bull market. In

this case, the current state may become fairly uncertain in an

HMM, i.e. p (rn = ω1 |y1..n ) ≈ p (rn = ω2 |y1..n ). The PMM

incorporates (F2) by using the distribution p (rn+1 |rn, yn )
which allows to decide to which extent Yn should affect the

expectation of Rn+1.

Table I indicates that the outcome produced by each model

is sensitive to the value of λ. In general, such a parameter

should be chosen by a cross-validation procedure accordingly

to the application considered.

Our experiments indicate that a more complex structure of

PMMs may allow identifying better suited regimes for specific

application. We believe that the presented way of use of the

flexibility of PMM will allow overcoming principal constraints

of HMMs.

This study has several limitations. Firstly, we assume only

two regimes in our models. Next, the Gaussian mixture density

and non-Gaussian heavy tailed observation distributions could

be considered as well. We consider only closing price per day,

while daily opening, low and high prices are also available as

well. Finally, our study concerns only one period of stock

prices and only one stock was used in the experiment. An

upcoming research article will contain more extensive exper-

iments and deal with the outlined points.

VI. CONCLUSION

The paper introduces a Pairwise Markov model for financial

time series, obtained by incorporating features (F1) and (F2),

mentioned in the Introduction, into the classic Hidden Markov

model. The results show that both of these features contribute

to improving the performance of the model in some applica-

tions. Let us mention the triplet Markov models, which allow,

in particular, dealing with the mixture observation distributions

and semi-Markovian hidden process simultaneously [12]. Such

general models models are also potentially capable of improv-

ing the outcome of the classic HMMs.
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